CONVERTED P-TO-S PHASE AND MOHO QUALITY BENEATH THE NEW MADRID SEISMIC ZONE FROM RECEIVER FUNCTION STUDIES

Moidaki M.1*, Gao S.S.2*, Liu K.H.3, Abdelsalam M.G.4, Hogan J.P.5, Atekwana E.6
1University of Botswana
2Missouri University of Science and Technology
3Missouri University of Science and Technology
4Missouri University of Science and Technology
5Missouri University of Science and Technology
6Oklahoma State University
* Corresponding Author : sgao@mst.edu

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 7 - 21
Geosci Res 1.1 (2010):7-21

Keywords : New-Madrid Seismic Zone, receiver functions, Moho sharpness, crustal thickness
Conflict of Interest : None declared

Cite - MLA : Moidaki M., et al "CONVERTED P-TO-S PHASE AND MOHO QUALITY BENEATH THE NEW MADRID SEISMIC ZONE FROM RECEIVER FUNCTION STUDIES." Geoscience Research 1.1 (2010):7-21.

Cite - APA : Moidaki M., Gao S.S., Liu K.H., Abdelsalam M.G., Hogan J.P., Atekwana E. (2010). CONVERTED P-TO-S PHASE AND MOHO QUALITY BENEATH THE NEW MADRID SEISMIC ZONE FROM RECEIVER FUNCTION STUDIES. Geoscience Research, 1 (1), 7-21.

Cite - Chicago : Moidaki M., Gao S.S., Liu K.H., Abdelsalam M.G., Hogan J.P., and Atekwana E. "CONVERTED P-TO-S PHASE AND MOHO QUALITY BENEATH THE NEW MADRID SEISMIC ZONE FROM RECEIVER FUNCTION STUDIES." Geoscience Research 1, no. 1 (2010):7-21.

Copyright : © 2010, Moidaki M., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Receiver functions from numerous teleseismic earthquakes recorded at 26 broadband seismic stations within the New Madrid Seismic Zone (NMSZ) were analyzed to map crustal thickness, Poisson’s ratio and Moho thickness within and around the NMSZ. The results show that the average crustal thickness of the stations within the Mississippi embayment is 33.4±0.28 km. The crust thins to about 25.5±1.09 km at OXF and thickens to about 43.3±0.12 km at PLAL. In the Mazatazal Belt, the crust varies from 30.2±0.14 to 53.1±0.29 km thick. However, the crust is thicker at WCI (53.1±0.29 km). There is a dramatic change in crustal thickness between the cratonic stations and stations within the Mississippi embayment. Our results from the Mazatzal belt are comparable to other Proterozoic and Archean shields that include reasonably well determined Moho depths, mostly based on receiver functions. The average crustal thickness for all shields is 39 km, while the average for Proterozoic shields is 40 km, and the average for Achaean shields is 38 km. We observed a dramatic change in crustal thickness from stations with the Mississippi embayment over a very short distance.

References

[1] Rudnick, R.L., and Fountain D. M. (1995). Nature and composition of the continental crust: A lower crustal perspective, Reviews of Geophysics, 33, 3, 267-309  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Gao, S.S., K.H. Liu, and C. Chen (2004). Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis. Geophysical Research Letters, VOL. 31, L20610, doi:10.1029/2004GL020813.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Al-Damegh, K., E. Sanvol, and M. Barazangi (2005). Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions, Earth and Planet. Sci. Lett., 231, 177-196  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Dugda, M.T., A.A. Nyblade, J. Julia, C.A. Langston, C.J. Ammon, and S. Simuya (2005). Crustal structure on Ethiopia and Kenya from Receiver function analysis: Implications for rift development in eastern Africa. Journal of Geophysical Research, Vol 11-, B01303, doi 10.1029/2004JB003065  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Van Schmus, W.R., and W.J. Hinze (1985). The Midcontinent Rift System. Ann. Rev. Earth Planet. Sci., 13: 345- 383  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Bexfield, C.E., J.H. McBride, A.J.M. Pugin, D. Ravat, S. Biswas, W.J. Nelson, T.H. Larson, S.L. Sargent, M.A. Fillerup, B.E. Tingey, L. Wald, M.L. Northcott, J.V. South, M.S. Okure, M.R. Chandler (2006). Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone, Tectonophysics 420, 5–21  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Braile, L. W. (1989). Crustal structure of the continental interior, in Geophysical framework of the continental United States, edited by L. C. Pakiser and W. D. Mooney, Memoirs of the Geol. Soc. of America, 172, 285-315, Boulder, Colo  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Dorman, J., and R. Smalley (1994). Lowfrequency seismic surface waves in the Upper Mississippi Embayment, Seism. Res. Lett., 65(2):137-148  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Mooney, W. D., M. C. Andrews, A. Ginzburg, D. A. Peters and R. M. Hamilton (1983). Crustal structure of the northern Mississippi embayment and a comparison with other continental rift zones, Tectonophysics, 94, 327-348  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Hough, S. E. (1990).Constraining sediment thickness in the San Francisco Bay area using observed resonances and Ps conversions, Geophys. Res. Lett., 17, 1469-1472  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Chen, K. C., J. M. Chiu, and Y. T. Yang (1996). Shear-wave velocity of the sedimentary Basin in the upper Mississippi Embayment using S _to P converted waves, Bull. Seis. Soc. Am., 86, 848-856.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Street, R., E. Woolery, Z. Wang, and J. Harris (1995). A short note on shearwave velocities and other site conditions at selected strong-motion stations in the New-Madrid seismic zone, Seis. Res. Lett., 66, 56-63, 1995.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Langston, C. A. (1979). Structure under Mount Ranier, Washington, inferred from teleseismic body waves, J. Geophys. Res., 84, 4749-4762  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Lie, A., D.W. Forsyth, K.M. Fisher (2003). Shear velocity structure and azimuthal anisotropy beneath eastern North America from Rayleigh wave inversion. J. Geophys. Res. 108 (B8) (Art. No. 2362).  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Ervin, C. P., and L. D. McGinnis (1975). Reelfoot rift: Reactivated precursor to the Mississippi embayment, Geological Society of America Bulletin, 86, 1287- 1296  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Braile, L. W., G. R. Keller, W. J. Hinze, and E. G. Lidiak (1982). An ancient rift complex and its relation to contemporary seismicity in the New Madrid seismic zone, Tectonics, 1, 225-237  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Kolata, D.R., and W.J. Nelson (1991). Tectonic history of the Illinois Basin: American Association of Petroleum Geologists, Memoir 51, p. 263–285.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Nelson, W.J., F.B. Denny, L.R. Follmer, J.M. Masters (1999). Quaternary grabens in southernmost Illinois: deformation near an active intraplate seismic zone. Tectonophysics 305, 381– 397.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Chiu, J.M., A.C. Johnston, Y.T. Yang, (1992). Imaging the active faults of the central New Madrid seismic zone using PANDA array data. Seismological Research Letters 63, 375– 393  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Van Schmus, W.R., D.A. Schneider, D.K. Holm, S. Dodson, B.K. Nelson (2007). New insights into the southern margin of the Archean–Proterozoic boundary in the north-central United States based on U–Pb, Sm–Nd, and Ar–Ar geochronology, recambrian Research 157,80–105  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Eisele, J., and C.E. Isachsen (2001). Crustal growth in southern Arizona: UPb geochronologic and Sm-Nd isotopic evidence for addition of the Paleoproterozoic Cochise block to the Mazatzal Province: American Journal of Sciences, v. 301, p. 773–797.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Holm, D.K., D.A. Schneider, S. Rose, C. Mancuso, M. McKenzie, K.A. Foland, K.V. Hodges (2007). Proterozoic metamorphism and cooling in the southern Lake Superior region, North America and its bearing on crustal evolution, Precambrian Research 157, 106–126  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Karlstrom, K.E., and S.A. Bowring (1988). Early Proterozoic assembly of tectonostratigraphic terranes in southwestern North America: The Journal of Geology, v. 96, 561–576.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Denison, R. E., R.B. Koepnick, W.H. Burke, E.A. Hetherington, and A. Fletcher (1984). Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chem. Geol. 112:145–167  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Christensen, N. I. (1996). Poisson’s ratio and crustal seismology, J. Geophys. Res., 101, 3139– 3156  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Clarke, T. J., and P. G. Silver (1991). A procedure for the systematic interpretation of body wave seismograms. 1. Application to Moho depth and crustal properties, Geophys. J. Int., 104, 41– 72  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Zandt, G., and C. J. Ammon (1995). Continental-crust composition constrained by measurements of crustal Poisson’s ratio, Nature, 374, 152–154  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Musacchio G., W.D. Mooney, J.H. Luetgert, and N.I. Cristensen (1997). Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from Vp/Vs ratios, Journal of Geophysical Research, Vol 102, NO B7, Pahes 15,225-15,241  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Scheuber, E., P. Giese, F.Schilling, M. Schmitz, and P. Wigger (1999). Crustal thickening in the Central Andes and the different natures of the Moho discontinuity. J. South American Earth Sci., 12, 201-220  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Nair, K.S., S.S. Gao, K.H. Liu, and P.G. Silver (2006). Southern African crustal evolution and composition from receiver function studies. Journal of geophysical research, vol.111, B02304, doi:10.1029/2005JB003802  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Owens, T. J., G. Zandt and S. R. Taylor (1984). Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms, J. Geophys. Res., 89, 7783-7795  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Zhu, L. P., and H. Kanamori (2000). Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res., 105, 2969– 2980  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Dueker K.G., and A.F. Sheehan (1993). Mantle discontinuity structure beneath Colorado Rocky Mountains and High Plains, J. Geophys. Res., 103, 7153- 7169  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Ammon, C. J., G. E. Randall, and G. Zandt (1990). On the non-uniqueness of receiver function inversions, J. Geophys. Res., 95, 15,303– 15,318  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Ligorria, J. P., and C. Ammon (1999). Iterative deconvolution and receiverfunction estimation, Bull. Seismol. Soc. Am., 89, 1395–1400  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Efron, B., and R. Tibshirani (1991). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Stat. Sci., 1, 54– 77.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Nguuri, T. K., J. Gore, D. E. James, S. J. Webb, and Kaapvaal Seismic Group (2001). Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and Zimbabwe cratons, Geophys. Res. Lett., 28, 2501– 2504  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Andrews, M. C., W. D. Mooney, and R. P. Meyer (1985). The relocation of microearthquakes in the northern Mississippi embayment, J. Geophys. Res. 90, 10223-10236  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] Chevrot, S., and R. D. van der Hilst (2000). The Poisson ratio of the Australian crust: Geological and geophysical implications, Earth Planet. Sci. Lett., 183, 121–132  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Christensen, N. I., and W. D. Mooney (1995). Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res., 100, 9761–9788  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Ferris, A., G. A. Abers, B. Zelt, B. Taylor, and S. Roecker (2006). Crustal structure across the transition from rifting to spreading: the Woodlark rift system of Papua New Guinea Geophys. J. Int. 166, 622–634 doi: 10.1111/j.1365-246X.2006.02970.x.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Zheng, T.Y., L. Chen, L. Zhao, W.W Xu, and R.X. Zhu (2006). Crust–mantle structure difference across the gravity gradient zone in North China Craton: seismic image of the thinned continental crust. Phys. Earth Planet. Int. 159, 43–58  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Kind, R., G.L. Kosarev, and N.V. Petersen (1995). Receiver function at the stations of the German Regional Seismic Network (GRSN), Geophys. J. Int. 121, 191-202.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Cook, F.A., (1995). The reflection Moho beneath the southern Canadian Cordillera, Can. J. Earth Sci. 32,1520- 1530  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Langston, A.C. (1994). An integrated study of crustal Structure and Regional wave propagation for Southern Missiouri, Bull. Seis. Soc. Am., 84, 105-118  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus