HERBICIDE RESISTANCE IN SRI LANKAN RICE (Oryza sativa L.) VARIETIES: A MOLECULAR APPROACH

S.R. WEERAKOON1*, S. SOMARATNE2
1Department of Botany, The Open University of Sri Lanka, Nawala, Nugegoda, 10250, Sri Lanka
2Department of Botany, The Open University of Sri Lanka, Nawala, Nugegoda, 10250, Sri Lanka
* Corresponding Author : shyamaweerakoon@gmail.com

Received : 01-12-2020     Accepted : 13-12-2020     Published : 15-12-2020
Volume : 12     Issue : 23       Pages : 10443 - 10447
Int J Agr Sci 12.23 (2020):10443-10447

Keywords : Ethyl Methyl Sulfonate, FAFLP, Glyphosate, Mutagenesis, Rice
Academic Editor : Dr Vijay Prajapati
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to the Faculty of Natural Sciences Research Grant provided by the Open University of Sri Lanka. Technical assistance provided by Ms S. Munasinghe is highly appreciated
Author Contribution : All authors equally contributed

Cite - MLA : WEERAKOON, S.R. and SOMARATNE, S. "HERBICIDE RESISTANCE IN SRI LANKAN RICE (Oryza sativa L.) VARIETIES: A MOLECULAR APPROACH." International Journal of Agriculture Sciences 12.23 (2020):10443-10447.

Cite - APA : WEERAKOON, S.R., SOMARATNE, S. (2020). HERBICIDE RESISTANCE IN SRI LANKAN RICE (Oryza sativa L.) VARIETIES: A MOLECULAR APPROACH. International Journal of Agriculture Sciences, 12 (23), 10443-10447.

Cite - Chicago : WEERAKOON, S.R. and S., SOMARATNE. "HERBICIDE RESISTANCE IN SRI LANKAN RICE (Oryza sativa L.) VARIETIES: A MOLECULAR APPROACH." International Journal of Agriculture Sciences 12, no. 23 (2020):10443-10447.

Copyright : © 2020, S.R. WEERAKOON and S. SOMARATNE, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Application of herbicides at various stages of rice fields with varying frequencies is a common practice in controlling rice weeds. Introduction of Herbicide Resistant (HR) rice enabled implementation of weed management with reduced cost, labor and efficacy while minimizing the environment pollutions. A broad-spectrum herbicide, N-(phosphonomethyl) glycine commercially known as glyphosate, targets 5-pyruvyl shikimate 3-phosphate synthase (EPSPS), an enzyme involved in the biosynthesis of aromatic amino acids through shikimic acid pathway in plants. The plant mutagen, Ethyl Methyl Sulfonate (EMS) causes mutants in EPSPS which occur in glyphosate tolerant crops. The present study focused on the development of HR-rice varieties through chemical mutagens, which adds another dimension into effective weed management in rice cropping systems in Sri Lanka paving the way to secure the food supply to the nation. HR-rice lines were developed using EMS and Fluorescent Amplified Fragment Length Polymorphism (FAFLP) analysis was carried out to identify molecular markers for HR-induced varieties. Seeds of twenty-five cultivated rice varieties were treated with 0.5gl-1 EMS and resulted mutated survived plants were exposed to glyphosate to assess the herbicide resistance. AFLP analysis was performed on EMS-mutated rice plants with 16 AFLP primer combinations. AFLP maker E11M31 indicated higher discriminative capability for natural herbicide resistant rice lines while E11M32 for HR-induced rice lines produced through EMS mutagenesis

References

1. Khush G.S. (2005) Plant Molecular Biology, 59 (1), 1-6.
2. Department of Agriculture, Sri Lanka (2006) Bulletin of Labour Force Statistics of Sri Lanka 2006.
3. Frisvold G.B., Hurley T.M. and Mitchell P.D. (2010) URL: http://www. agbioforum. org/v12n34/v12n34a00-frisvold.htm.
4. Peters K., Breitsameter L., and Gerowitt B. (2014) Agronomy for sustainable development, 34(4), 707-721.
5. Labrada R. (2007) Proceedings of 21st Asian Pacific Weed Scinse Society (APWSS) Conference, Colombo, Sri Lanka, Pp.8-15.
6. Juraimi A. S., Uddin M. K., Anwar M. P., Mohamed M. T. M., Ismail M. R., and Man A. (2013) Australian Journal of Crop Science, 7(7), 989.
7. Green J. M. (2012) Pest management science, 68 (10), 1323-1331.
8. Sandhu S. S., Bastos C. R., Azini L. E., Neto A. T. and Colombo C. (2002) Genetics and Molecular Research, 1, 359-370.
9. Tan S., Evans R. R., Dahmer M. L., Singh B. K. and Shaner D. L. (2005) Pest Management Science, 61(3), 246-257.
10. Barro F., Fernandez-Escobar J., De La Vega M. and Martin A. (2001) Plant Breed, 120(3), 262–264.
11. Bhagwat A., Krishna T. G. and Bhatia C. R. (1997) Journal of Genetics, 76, 201-208.
12. Stuber C.W., Polacco M. and Senior M.L. (1999) Crop Science, 39, 1571-1583.
13. Vos P., Hogers R., Bleeker M., Vandelee T., Hornes M., Fritjers A., Pot J., Peleman J.,Kuiper M., and Zabeau M. (1995) Nucleic Acid Research, 23, 4407-4414.
14. Dasmahapatra K. K., Hoffman J. I. and Amos W. (2009) Heredity, 103(2), 168-177.
15. Mackill D. J., Zhang Z., Redona E. D. and Colowit P. M. (1996) Genome, 39(5), 969-977.
16. Saini N., Jain N., Jain S. and Jain R. K. (2004) Euphytica, 140 (3), 133-146.
17. Loh J. P., Kiew R., Kee A., Gan L. H. and Gan Y. Y. (1999) Annals of Botany, 84 (2), 155-161.
18. Ekanayake E. M. S., Weerakoon S. R., Somaratne S. and Weerasena O. V. D. S. J. (2017a) Journal of Information Processing in Agriculture.
19. Ekanayaka E. M. S., Weerakoon S.R., Somarathne S., Weerasena O.V.D.S.J., Silva T.D. (2017b) Scholars Journal of Research in Agriculture and Biology, 2(2), 108-114.
20. Ekanayaka E. M. S. I., Weerakoon S. R., Silva T. D. and Somaratne S. (2016a) IRA-International Journal of Applied Sciences, 3(3).
21. Ekanayaka S. I., Weerakoon S. R., Somaratne S., Weerasena O. V. D. S. J. and Silva T. D. (2016b) 20th Australian Weeds Conference (20WSC), Perth, Australia. 11th to 15th September, 2016, Pp. 89-92.
22. Weerakoon S.R., Somaratne S., Ekanayaka E. M. Sachini I. and Munasinghe S. (2018) Rice Crop-Current Developments, Pp. 193-210). ISBN: 978-1-78923-601-9 Print ISBN: 978-1-78923-600-2. DOI: 10.5772/intechopen.69831
23. Lakshika R. A. D. D., Munasinghe D. S. P., Weerakoon S. R. and Somaratne S. (2019) Journal of Agricultural Sciences-Sri Lanka, 14(1), 17-33.
24. Jaccard P. (1901) Bulletin de la Société Vaudoise des Sciences Naturelles, 7, 547-579.
25. Kovach K. K. and Love L. P. (1998) Harvard Negotiation Law Review, 3 (71).
26. Penna S., Shriram Mirajkar S. and Bhagwat S. G. (2015), Induced Mutations and Crop Improvement. In book: Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement. Editors: Bahadur B, Venkat Rajam M, Sahijram Leela, Krishnamurthy KV, Vol 1. Publisher: Springer India 2015.
27. Kharkwal M. C. and Shu Q. Y. (2009) Food and Agriculture Organization of the United Nations, Rome, 33-38.
28. Jiang S. Y. and Ramachandran S. (2010) International Journal of Biological Science, 6 (3), 228-251.
29. Beckie H. J. (2013) Prairie Soils and Crops Journal, 6, 33-39.
30. Collard B.C. and Mackill D.J. (2008) Philosophical Transactions of the Royal Society of London, 363, 557-572.