PHENOTYPING AND MOLECULAR MARKER ANALYSIS OF WH1105 AND KHARCHIA 65 BACKCROSSES AND F4 PROGENIES OF WHEAT FOR SALINITY TOLERANCE

VARSHA1*, S. YASHVEER2, V. SINGH3, P. VERMA4
1Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
2Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
3Department of Genetics and Plant Breeding, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
4Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
* Corresponding Author : varshasingh2794@gmail.com

Received : 01-06-2020     Accepted : 27-06-2020     Published : 30-06-2020
Volume : 12     Issue : 12       Pages : 9995 - 10000
Int J Agr Sci 12.12 (2020):9995-10000

Keywords : Nax1, Nax2, Polymorphism, SSRs, PCA, Cluster analysis
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, Chaudhary Charan Singh Haryana Agricultural University, Hisar, 125004, Haryana, India
Author Contribution : All authors equally contributed

Cite - MLA : VARSHA, et al "PHENOTYPING AND MOLECULAR MARKER ANALYSIS OF WH1105 AND KHARCHIA 65 BACKCROSSES AND F4 PROGENIES OF WHEAT FOR SALINITY TOLERANCE ." International Journal of Agriculture Sciences 12.12 (2020):9995-10000.

Cite - APA : VARSHA, YASHVEER, S., SINGH, V., VERMA, P. (2020). PHENOTYPING AND MOLECULAR MARKER ANALYSIS OF WH1105 AND KHARCHIA 65 BACKCROSSES AND F4 PROGENIES OF WHEAT FOR SALINITY TOLERANCE . International Journal of Agriculture Sciences, 12 (12), 9995-10000.

Cite - Chicago : VARSHA, S. YASHVEER, V. SINGH, and P. VERMA. "PHENOTYPING AND MOLECULAR MARKER ANALYSIS OF WH1105 AND KHARCHIA 65 BACKCROSSES AND F4 PROGENIES OF WHEAT FOR SALINITY TOLERANCE ." International Journal of Agriculture Sciences 12, no. 12 (2020):9995-10000.

Copyright : © 2020, VARSHA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Wheat cultivar, WH1105 is widely grown due to many agronomically superior qualities but is not tolerant to soil salinity. Hence a molecular backcross breeding program was initiated to introgress two salinity tolerant genes (Nax1 and Nax2) from a well-known salinity tolerant cultivar Kharchia65 into WH1105. BC1F3, BC2F2 and F4 generations of the cross WH1105×Kharchia65 were evaluated for various morphological traits under salt-stress condition. On the basis of phenotypic and genotypic variations, 43 high yielding plants were selected from the cross. Out of 178 SSRs tested, 30 were polymorphic for background selection of the foreground selected plants. Cluster analysis of selected plants of all three generations with parents showed that all the selected plants have high similarity with recurrent parent (WH1105). Four plants were selected as high grain yielding and salt tolerant which could be further backcrossed with recurrent parent to develop salt-tolerant wheat lines.

References

1. Food and Agriculture Organization of the United Nations: FAOSTAT (2018).
2. Carillo P., Annunziata M.G., Pontecorvo G., Fuggi A. and Woodrow P. (2011) Salinity Stress and Salt Tolerance. 10.5772/22331.
3. Parvaiz A., Azooz M.M. and Prasad M.N.V. (2013) Springer-Verlag New York 1 ISBN:978-1-4614-4747-4.
4. Rahaman M., Chen D., Gillani Z., Klukas C. and Chen M. (2015) Frontiers in Plant Science, 6, 619.
5. Furbank R.T. and Tester M. (2011) Trends in Plant Science,16(12), 635-644.
6. Yamaguchi T. and Blumwald E. (2005) Trends in Plant Science, 10(12), 615-620.
7. Liu X., Shi J., Zhang X., Ma Y. and Jia J. (2001) Acta Botanica Sinica, 43(9), 948-954.
8. Munns R. (2002) Plant, Cell & Environment, 25(2), 239-250.
9. Ma L., Zhou E., Huo N., Zhou R., Wang G. and Jia J. (2007) Euphytica, 153(1-2), 109-117.
10. Kurup S.S., Hedar Y.S., Al Dhaheri M.A., El-Heawiety A.Y., Aly M.A. and Alhadrami G. (2009) Journal of Food Agriculture and Environment, 7(3), 3-50.
11. Munns R. and James R.A., (2003) Plant and Soil, 253(1), 201-218.
12. Yadav S., Yashveer S., Solanki Y.P.S. and Singh V. (2017) Indian Journal of Plant Physiology, 23(1), 57-64.
13. Lindsay M.P., Lagudah E.S., Hare R.A. and Munns R. (2004) Functional Plant Biology, 31(11), 1105-1114.
14. Byrt C.S., Platten J.D., Spielmeyer W., James R.A., Lagudah E.S., Dennis E.S., Tester M. and Munns R. (2007) Plant Physiology, 143(4), 1918-1928.
15. Zhang J.L. and Shi H. (2013) Photosynthesis research, 115(1), 1-22.
16. Ashraf M. and Foolad M.R. (2013) Plant Breeding, 132(1), 10-20.
17. Saghai-Maroof M.A, Soliman K.M., Jorgensen R.A. and Allard R.W. (1984) Proceedings of the National Academy of Sciences, 81(24), 8014-8018.
18. Rohlf F.J. and Slice D.E. (1993) NTSYS-pc. Version, 1.
19. Dadrwal B.K. (2018) Ph.D. thesis. SKNAU, Jobner.
20. Haq T.U., Gorham J., Akhtar J., Akhtar N. and Steele K.A. (2010) Functional Plant Biology, 37(7), 634-645.
21. Diaguna R., Suwarno F.C. and Surahman M. (2017) International Journal of Applied Science and Technology, 7(3), 69-76.
22. Hasan M.M., Baque M.A., Habib M.A., Yeasmin M. and Hakim M.A. (2017) Universal Journal of Agricultural Research, 5(4), 235-249.
23. Turki N., Harrabi M. and Okuno K. (2012) Journal of Arid Land Studies, 22(1), 311-314.
24. Naik V.R., Biradar S.S., Yadawad A., Desai S.A. and Veeresha B.A. (2015) Research Journal of Agricultural Sciences, 6(1), 123-125.
25. Kumar N., Markar S. and Kumar V. (2014) Bioscience Discovery, 5(1), 64-69.
26. Kumar B., Singh C.M. and Jaiswal K.K. (2013) The Bioscan, 8(1), 143-147.
27. Ali Y., Atta B.M., Akhter J., Monneveux P. and Lateef Z. (2008) Pakistan Journal of Botany, 40(5), 2087-2097.
28. Ijaz F., Khaliq I. and Shahzad M.T. (2015) Journal of Agricultural Research, 53(2), 157-164.
29. Ahmed N., Chowdhry M.A., Khaliq I. and Maekawa M. (2016) Indonesian Journal of Agricultural Science, 8(2), 53-59.
30. Safi L., Singh R. and Abraham T. (2017) Journal of Pharmacognosy and Phytochemistry, 6(5), 18-21.
31. Panse V.G. (1957) Indian Journal of Genetics, 17(2), 318-328.
32. Rangare N.R., Krupakar A., Kumar A. and Singh S. (2010) Electronic Journal of Plant Breeding, 1(3), 231-238.
33. Munns R. and Tester M., (2008) Annu. Rev. Plant Biol., 59, 651-681.
34. Munns R., James R.A., Xu B., Athman A., Conn S.J., Jordans C., Byrt C.S., Hare R.A., Tyerman S.D., Tester M. and Plett D. (2012) Nature Biotechnology, 30(4), 360.
35. Abbasov M., Akparov Z.I., Street K., Jafarova R., Sheykzamanova F., Rzayeva S., Babayeva S. and Munns R. (2011) Diversity, characterization and utilization of plant genetic resources for enhanced resilience to climate change, 121.
36. De Bustos A., Rubio P., Soler C., Garcia P. and Jouve N. (2001) Springer, Dordrecht, 171-176.
37. Vishwakarma M.K., Mishra V.K., Gupta P.K., Yadav P.S., Kumar H. and Joshi A.K. (2014) Current Plant Biology, 1, 60-67.
38. James R.A., Blake C., Zwart A.B., Hare R.A., Rathjen A.J. and Munns R. (2012) Functional Plant Biology, 39(7), 609-618.
39. Gorham, J., Hardy, C., Jones, R.W., Joppa, L.R. and Law, C.N. (1987) Theoretical and Applied Genetics, 74(5), 584-588.
40. Genc Y., Oldach K., Verbyla A.P., Lott G., Hassan M., Tester M., Wallwork H. and McDonald G.K. (2010) Theoretical and Applied Genetics, 121(5), 877-894.