ANALYSIS OF RICE GENOME LONG NON-CODING RNA SEQUENCES

N. SARANYA1*, A. KANDAVELMANI2, L.T. SARAVANAN3, S. SHANMUGAPRIYA4, M. JAYAKANTHAN5, N. BHARATHI6, J. RAMALINGAM7
1Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
2Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
3Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
4Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
5Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
6Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
7Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu
* Corresponding Author : saranya.n@tnau.ac.in

Received : 13-02-2018     Accepted : 23-02-2018     Published : 28-02-2018
Volume : 10     Issue : 4       Pages : 5192 - 5195
Int J Agr Sci 10.4 (2018):5192-5195
DOI : http://dx.doi.org/10.9735/0975-3710.10.4.5192-5195

Keywords : Rice long non-coding RNA, Computational analysis, Motifs, Repeats
Conflict of Interest : None declared
Acknowledgements/Funding : Author are thankful to Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, Coimbatore and DBT-BTIS facility provided by DBT, Govt. of India
Author Contribution : NS designed and executed the work. LTS and SS involved in data collection. NS, NB, AK and MJ analyzed the results. NS, AK and JR prepared and revised the manuscript

Cite - MLA : SARANYA, N., et al "ANALYSIS OF RICE GENOME LONG NON-CODING RNA SEQUENCES." International Journal of Agriculture Sciences 10.4 (2018):5192-5195. http://dx.doi.org/10.9735/0975-3710.10.4.5192-5195

Cite - APA : SARANYA, N., KANDAVELMANI, A., SARAVANAN, L.T., SHANMUGAPRIYA, S., JAYAKANTHAN, M., BHARATHI, N., RAMALINGAM, J. (2018). ANALYSIS OF RICE GENOME LONG NON-CODING RNA SEQUENCES. International Journal of Agriculture Sciences, 10 (4), 5192-5195. http://dx.doi.org/10.9735/0975-3710.10.4.5192-5195

Cite - Chicago : SARANYA, N., A. KANDAVELMANI, L.T. SARAVANAN, S. SHANMUGAPRIYA, M. JAYAKANTHAN, N. BHARATHI, and J. RAMALINGAM. "ANALYSIS OF RICE GENOME LONG NON-CODING RNA SEQUENCES." International Journal of Agriculture Sciences 10, no. 4 (2018):5192-5195. http://dx.doi.org/10.9735/0975-3710.10.4.5192-5195

Copyright : © 2018, N. SARANYA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

LncRNA reserves meaningful biological information that has to be explored in order to understand the various regulatory mechanisms during stress conditions. Annotating the rice genomic lncRNA sequences based on the presence of motifs and repeats have been carried out in the present study. RNA C to U editing site, Polyadenylation sites, Rice splicing sites and untranslational region motifs are predominantly found in rice lncRNA sequences which shows their role in transcriptional and translational control of gene expression. Moreover, repeat analysis highlighted the presence of transposable elements in the lncRNAs. Studies involving lncRNA modifications with relevance to various biotic and abiotic stress conditions may provide various clues to reprogram transcriptional and translational events towards crop improvement and defence strategies.

References

1. Wierzbicki A.T. (2012) Curr.Opin. Plant Biol, 15, 517–522.
2. Kim E.D., Sung S. (2012) Trends Plant Sci, 17, 16–21.
3. Liu X., Hao L., Li D., Zhu L. and Hu S. (2015) Genomics Proteomics Bioinformatics, 13(3),137–47.
4. Heo J.B. and Sung S. (2011) Science, 331(6013), 76–9.
5. Liu J., Jung C., Xu J., Wang H., Deng S., Bernad L., Arenas-Huertero C. and Chua N.H. (2012). Plant Cell 24, 4333–4345.
6. Xin M., Wang Y., Yao Y., Song N., Hu Z., Qin D., Xie C., Peng H., Ni Z. and Sun Q. (2011) BMC Plant Biol., 11, 61.
7. Kim E.D. and Sung S. (2012) Trends Plant Sci., 17(1), 16–21.
8. Quan M., Chen J. and Zhang D. (2015). Int J Mol.Sci., 16, 5467–5496.
9. Zhu Q.H. and Wang M.B. (2012) Genes. 3,176–190.
10. Swiezewski S., Liu F., Magusin A. and Dean C. (2009) Nature, 462(7274) ,799–802.
11. Heo J.B. and Sung S. (2011) Science, 331, 76–79.
12. Shin J.H. and Chekanova J.A. (2014) PLoS Genet., 10(9), e1004612.
13. Bardou F., Ariel F., Simpson C.G., Romero-Barrios N., Laporte P., Balzergue S., Brown J.W. and Crespi M. (2014) Dev Cell. 30(2), 166–76.
14. Kwenda S, Birch PR and Moleleki LN (2016) BMC genomics, 17(1), 614.
15. Zhang YC, Liao JY, Li ZY, Yu Y, Zhang JP, Li QF, et al (2014) Genome Biol., 15, 512.
16. Zhang YC and Chen YQ (2013) Biochem Biophys Res Commun., 436(2), 111-114.
17. Shin SY and Shin C (2016) Plant Biotechnol Rep., 11. 10(2), 35-47.
18. Paytuví Gallart A., Hermoso Pulido A., AnzarMartínez de Lagrán I., Sanseverino W., Aiese Cigliano R. (2016) Nucleic Acids Res., 44(D1), D1161-D1166.
19. Yi X., Zhang Z., Ling Y., Xu W. and Su Z. (2014) Nucleic Acids Res., 43(D1), D982-D989.
20. Xuan H., Zhang L., Liu X., Han G., Li J., Li X., Liu A., Liao M. and Zhang S. (2015) Gene, 573, 328–332.
21. Zhiguo E., Wang L. and Zhou J. (2013) BMB Rep., 46(9), 439.
22. Vu L.T. and Tsukahara T. (2017). Biosci trends., 11(3), 243-253.
23. Docking T.R., Saadé F.E., Elliott M.C. and Schoen D.J. (2006) J Mol Evol, 62(4), 375-87.