DESIGN OF NEW PARAMETERIZED TRANSFORMATION FUNCTIONS AND MULTI OBJECTIVE CRITERION FOR FINGERPRINT IMAGE ENHANCEMENT

STEPHEN M.J.1*, PRASAD REDDY P.V.G.D.2
1Department of CSE, Wellfare Institute of Science Technology & Management, Visakhapatnam- 530 027, AP, India.
2Department of CS & SE, Andhra University, Visakhapatnam- 530 003, AP, India.
* Corresponding Author : jamesstephenm@yahoo.com

Received : 06-11-2013     Accepted : 03-07-2014     Published : 31-07-2014
Volume : 3     Issue : 2       Pages : 54 - 59
Inform Sci Tech 3.2 (2014):54-59

Keywords : Image enhancement, Minutiae, Objective criterion, Optimization techniques, Transformation function
Conflict of Interest : None declared

Cite - MLA : STEPHEN M.J. and PRASAD REDDY P.V.G.D. "DESIGN OF NEW PARAMETERIZED TRANSFORMATION FUNCTIONS AND MULTI OBJECTIVE CRITERION FOR FINGERPRINT IMAGE ENHANCEMENT." Information Science and Technology 3.2 (2014):54-59.

Cite - APA : STEPHEN M.J., PRASAD REDDY P.V.G.D. (2014). DESIGN OF NEW PARAMETERIZED TRANSFORMATION FUNCTIONS AND MULTI OBJECTIVE CRITERION FOR FINGERPRINT IMAGE ENHANCEMENT. Information Science and Technology, 3 (2), 54-59.

Cite - Chicago : STEPHEN M.J. and PRASAD REDDY P.V.G.D. "DESIGN OF NEW PARAMETERIZED TRANSFORMATION FUNCTIONS AND MULTI OBJECTIVE CRITERION FOR FINGERPRINT IMAGE ENHANCEMENT." Information Science and Technology 3, no. 2 (2014):54-59.

Copyright : © 2014, STEPHEN M.J. and PRASAD REDDY P.V.G.D., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Extracting minutiae features out of poor quality fingerprints is the most challenging problem and it is extremely difficult for the automated system to accurately classify poor quality fingerprints and reliably locate the minutiae in such fingerprint images. In the present work, some image enhancement techniques are employed in order to obtain reliable estimates of minutiae locations prior to minutiae extraction. For the task of image enhancement some parameterized transformation functions were designed, which use local and global information of the image. Some novel optimization techniques like Modified Teaching Learning Based Optimization (M-TLBO), Modified Harmony Search (M-HS), Particle Swarm Optimization, Simple League Championship Algorithm (SLCA) were used to control and change the parameters in each transformation function which is applied on the poor quality fingerprint images to remove noise. A multi objective criterion is proposed to evaluate the rate of enhancement at each step in the enhancement process. The proposed technique outperforms the other existing noise elimination techniques.

References

[1] Gonzalez R.C. and Woods R.E. (2001) Digital Image Pro-cessing, 2nd ed., Prentice Hall  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Gonzalez R., Woods R. and Eddins S. (2004) Digital Image Processing using Matlab, 2nd ed., Upper Saddle River, NJ Jen-sen: Prentice Hall  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Levi L. (1974) Computer Graphics and Image Processing, 3(2), 163-177.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Bilcu R.C. and Vehvilainen M. (2008) Image and Signal Pro-cessing, 10-19  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Zhang B. and Allebach J.P. (2008) IEEE Trans. on Image Pro-cessing, 17(5), 664-678.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Saitoh F. (1993) Proc. IEEE SMC, 899-904  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Jingquan S., Mengyin F. and Chanjian Z. (2003) Computer Engineering and Applications, 27, 4-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Runqiu G., Junfeng L. and Xiaochun L. (2004) XIDIAN Univ. J., 31, 6-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Xiaodong T. and Zhong L. (2006) Ship Electronics Eng. J., 26, 154-157  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Watson C.I., Garris M.D., Tabassi E., Wilson C.L., Mccabe R.M., Janet S. and Ko K. (2004) User’s guide to NIST Biometric Image software (NBIS), National Institute of Standards and Technology  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Rosin P.L. (1997) Machine Vision and Applications, Springer Verlag, 9, 139-159.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] DaPonte J.S. and Fox M.D. (1988) IEEE Transactions on Medi-cal Imaging, 7(2), 109-117  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Maio D., Maltoni D., Cappelli R., Wayman J.L. and Jain A.K. (2002) Proceedings 16th International Conference on Pattern Recognition, Québec City, 3, 811-814  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Stephen M.J. and Prasad Reddy P.V.G.D. (2013) International Journal of Computer Applications, 75  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Stephen M.J. and Prasad Reddy P.V.G.D. (2013) International Journal of Computer Applications, 66(21), 34-40  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Galbally J., Fierrez J., Alonso-Fernandez F. and Martinez-Diaz M. (2011) Telecommunication Systems, Special Issue on Bio-metrics, 47(3), 243-254.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus