MOLECULAR PHYLOGENY OF VENERIDAE (MOLLUSCA:BIVALVIA) BASED ON NUCLEAR RIBOSOMAL INTERNAL TRANSCRIBED SPACER REGION

AMPILI M.1*, SREEDHAR S.K.2
1Department of Zoology, N.S.S. Hindu College, Changanassery- 686 102, Kerala, India.
2Department of Zoology, S.N. College, Cherthala- 688 530, Kerala, India.
* Corresponding Author : ampilirajeev@gmail.com

Received : 03-04-2014     Accepted : 24-04-2014     Published : 05-05-2014
Volume : 5     Issue : 1       Pages : 96 - 101
Int J Mol Biol 5.1 (2014):96-101
DOI : http://dx.doi.org/10.9735/0976-0482.5.1.96-101

Conflict of Interest : None declared

Cite - MLA : AMPILI M. and SREEDHAR S.K. "MOLECULAR PHYLOGENY OF VENERIDAE (MOLLUSCA:BIVALVIA) BASED ON NUCLEAR RIBOSOMAL INTERNAL TRANSCRIBED SPACER REGION." International Journal of Molecular Biology 5.1 (2014):96-101. http://dx.doi.org/10.9735/0976-0482.5.1.96-101

Cite - APA : AMPILI M., SREEDHAR S.K. (2014). MOLECULAR PHYLOGENY OF VENERIDAE (MOLLUSCA:BIVALVIA) BASED ON NUCLEAR RIBOSOMAL INTERNAL TRANSCRIBED SPACER REGION. International Journal of Molecular Biology, 5 (1), 96-101. http://dx.doi.org/10.9735/0976-0482.5.1.96-101

Cite - Chicago : AMPILI M. and SREEDHAR S.K. "MOLECULAR PHYLOGENY OF VENERIDAE (MOLLUSCA:BIVALVIA) BASED ON NUCLEAR RIBOSOMAL INTERNAL TRANSCRIBED SPACER REGION." International Journal of Molecular Biology 5, no. 1 (2014):96-101. http://dx.doi.org/10.9735/0976-0482.5.1.96-101

Copyright : © 2014, AMPILI M. and SREEDHAR S.K., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

In the present study, molecular phylogeny of bivalve family Veneridae (Mollusca:Bivalvia) was analysed using internal transcribed spacer (ITS) region of 21 species belonging to different subfamilies of Veneridae. ITS of ribosomal DNA can be utilised for delineating evolutionary and genetic relationships between closely related taxa. ITS region of Paphia malabarica belonging to subfamily Tapetinae and Meretrix casta belonging to meretricinae was sequenced. Total genomic DNA was extracted from the adductor muscle using CTAB protocol and the internal transcribed spacer region of nuclear ribosomal DNA was PCR amplified and sequenced using ITS (ITS1 and ITS2) forward and reverse primers. Total length of sequence was found to be 895 bp in Paphia malabarica and 785 bp in Meretrix casta. GC contents in the sequences were found to be 58.99% and 64.68% respectively in Paphia malabarica and Meretrix casta. ITS1 region of Paphia malabarica consisted of 393 bp with GC content 58.12% and 309 bp with 63.75% GC content in Meretrix casta. ITS2 region generated 248bp with 63% GC content in Paphia malabarica and 240bp with 72.06% GC content in Meretrix casta. 5.8S region rendered 157bp with 60% GC content in Paphia malabarica and 138bp with 61.32% GC content in Meretrix casta. Phylogenetic trees were constructed using Neighbor-Joining and Maximum-Parsimony methods. The analysis produced trees with similar topology. The tree topologies indicated two clades with three well resolved groups. Phylogenetic analysis supported the morphological classification and monophyly of the family Veneridae.

References

[1] Keen A.M. (1969) Mollusca, 6(2), N491-N952.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Borsa P. & Thiriot- Quievreux C. (1990) Aquaculture, 90,209-27.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Harte M.E. (1992) American Malacological Bulletin, 9, 199-206.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Borsa P. & Benzie J.A.H. (1993) Journal of Molluscan Studies, 59, 275-284.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Passamonti M., Mantovani B. & Scali V. (1999) Journal of the Marine Biological Association of the United Kingdom, 79, 899-906.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Shimamoto M. (1996) Bulletin Institute of Oceanography (Monaco) Special Issue, 14(4), 263-270.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Canapa A., Schiaparelli S., Marota I. & Barucca M. (2003) Ma-rine Biology, 142, 1125-1130.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Chen J., Li Q., Kong L. & Zheng X. (2011) Zoologica Scripta, 40(3), 260-271.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Yu E.T., Juinio-Meñez M.A. & Monje V.D. (2000) Marine Bio-technology, 2, 511-516.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Yu Z.N., Kong X.Y., Zhuang Z.M., Liu Y.S. & Song L.S. (2001) Journal of Fishery Science China, 8(1), 6-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Fernandez A., Garcia T., Asensio L, Rodriguez M.A., Gonzalez I., Hernandez P.E. & Martin R. (2001) Journal of Food Science, 66, 657-661.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Insua A., Lopez-Pinon M.J. & Mendez J. (2003) Genome, 46, 595-604.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Vidigal T.H.D.A., Spatz L., Kissinger J.C., Redondo R.A.F., Pires E.C.R., Simpson A.J.G. & Carvalho O.S. (2004) Mem. Inst. Oswaldo Cruz, Rio de Janeiro, 99(2), 153-158.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Lee T. & Ó Foighil D. (2005) Evolution, 59, 2139-2358.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] He M.X., Huang L.M., Shi J.H. & Jiang Y.P. (2005) Marine Bio-technology, 7(1), 40-45.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Cheng H.L., Meng X.P., Ji H.J., Dong Z.G. & Chen S.Y. (2006) Journal of Shellfish Research, 25, 833-839.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Wood A.R., Apte S., MacAvoy E.S. & Gardner J.P.A. (2007) Molecular Phylogenetics and Evolution, 44,685-698.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Won H. & Renner S.S. (2005) Molecular Phylogenetics and Evolution, 36, 581-597.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Jansen G., Devaere S., Weekers P.H.H. & Adriaens D. (2006) Molecular Phylogenetics and Evolution, 38, 65-78.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Winnepenninckx B., Backeljau T. & De Wachter R. (1993) Trends in Genetics, 9, 407.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. (1990) Journal of Molecular Biology, 215, 403-410.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. (1990) Journal of Molecular Biology, 215, 403-410.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Gouy M., Guindon S. & Gascuel O. (2010) Molecular Biology and Evolution, 27(2), 221-224.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. (2011) Molecular Biology and Evolution, 28, 2731-2739.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Nei M. & Kumar S. (2000) Molecular Evolution and Phylogenet-ics, Oxford University Press, New York.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Felsenstein J. (1985) Systematic Zoology, 34, 152-161.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Hillis D.M. & Dixon M.T. (1991) Quarterly Review of Biology, 66, 410-453.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Navajas M., Lagnel J., Gutterrez J. & Boursot P. (1998) Heredi-ty, 80, 742-752.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Dahlgren T.G., Weinberg J.R. & Halanych K.M. (2002) Marine Biology, 137, 487-495.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Coleman A.W., Vacquier V.D. (2002) Journal of Molecular Evo-lution, 54, 246-257.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] López-piñón M.J., Insua A. & Méndez J. (2002) Marine Biotech-nology, 4, 495-502.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Ashokan K.V., Pillai M.M., Angadi S.M. & Mundaganur D.S. (2009) The Internet Journal of Genomics and Proteomics, 5(1), 1-19.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Shimamoto M. (1986) Science Reports of the Tohoku Universi-ty, Series 2: Geology = Tohoku Daigaku Rika Hokoku, Dai 2: Shu Chishitsugaku, 56(1), 1-39.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Campbell D.C. (2000) Geological Society of London Special Publication, 77, 31-46.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Canapa A., Marota I., Rollo F. & Olmo E. (1996) Journal of Mo-lecular Evolution, 43, 517-522.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Canapa A., Marota I., Rollo F. & Olmo E. (1999) Journal of Mo-lecular Evolution, 48, 463-468.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Giribet G. & Wheeler W. (2002) Invertebrate Biology, 121, 271-324.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Matsumoto M. (2003) Molecular Phylogenetics and Evolution,  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus