ANALYTICAL APPROACH FOR FLAVIVIRUS RESEARCH

Dimpal Verma1, Virendra Gomase2*
1Department of Bioinformatics, Padmashree Dr. D.Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, India
2Department of Bioinformatics, Padmashree Dr. D.Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, India
* Corresponding Author : virusgene1@yahoo.co.in

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 1 - 11
J Virol Res 1.1 (2010):1-11
DOI : http://dx.doi.org/10.9735/0976-8785.1.1.1-11

Cite - MLA : Dimpal Verma and Virendra Gomase "ANALYTICAL APPROACH FOR FLAVIVIRUS RESEARCH." Journal of Virology Research 1.1 (2010):1-11. http://dx.doi.org/10.9735/0976-8785.1.1.1-11

Cite - APA : Dimpal Verma , Virendra Gomase (2010). ANALYTICAL APPROACH FOR FLAVIVIRUS RESEARCH. Journal of Virology Research, 1 (1), 1-11. http://dx.doi.org/10.9735/0976-8785.1.1.1-11

Cite - Chicago : Dimpal Verma and Virendra Gomase "ANALYTICAL APPROACH FOR FLAVIVIRUS RESEARCH." Journal of Virology Research 1, no. 1 (2010):1-11. http://dx.doi.org/10.9735/0976-8785.1.1.1-11

Copyright : © 2010, Dimpal Verma and Virendra Gomase, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Flaviviridae is the family of viruses and has been studied for many decades. New analytical approaches i.e., Isolation, sequencing, structure elucidation also have been performed. Areas that need to be focused is drugs designing, many of the work have been done for it, but targets remains the non structural proteins, viral binding site still needs to be focused on. Development of new transgenic cell lines, so that it becomes resistant to infection from virus and inturn reduce flaviviral infection can also be potential site to work. Analytical methods to target the virus need to be developed, which could be use to find potential target site to inhibit viral replication.

References

[1] Tautz, N., Meyers, G., Thiel, H.J., 1998. Pathogenesis of mucosal disease, a deadly disease of cattle caused by a pestivirus. Clin Diagn Virol. 10 (2-3), 121-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Deregt,D., Loewen, K.,G., 1995. Bovine viral diarrhea virus: biotypes and disease. Can Vet J. 36(6), 371–378  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Büchen-Osmond, C., 2006. In: ICTVdB - The Universal Virus Database, version 4.Index of Viruses - Flaviviridae  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Büchen-Osmond, C., 2006.. In: ICTVdB - The Universal Virus Database, version 3. 00.026. Flaviviridae  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Büchen-Osmond, C., 2006. In: ICTVdB - The Universal Virus Database, version 4. 00.026.0.01. Flavivirus.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Gould, E.A., Solomon, T., 2008. Pathogenic flaviviruses. Lancet. 371(9611), 500-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Harakuni, T., Kohama, H., Tadano, M., Uechi, G., Tsuji, N., Matsumoto, Y., Miyata, T., Tsuboi, T., Oku, H., Arakawa, T., 2009. Mucosal vaccination approach against mosquito-borne Japanese encephalitis virus. Jpn J Infect Dis. 62(1), 37-45  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Chaturvedi, U.C., Nagar, R., 2008. Dengue and dengue haemorrhagic fever: Indian perspective. J Biosci. 33(4), 429-41  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Tomori, O., 2004 Yellow fever: the recurring plague. Crit Rev Clin Lab Sci. 41(4), 391-427.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Neyts, J., Leyssen, P., De Clercq E.,1999. Infections with flaviviridae Verh K Acad Geneeskd Belg. 61(6), 661-97  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Moennig,V., Plagemann, P.G., 1992. The pestiviruses. Adv Virus Res. 41, 53-98  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Armas-Merino, R., Wolff, C., Soto, R., Jirón ,M.I., Parraguez, A., 1999. Hepatitis C virus and resulting diseases. Rev Med Chil. 127(10), 1240-54  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Altmeyer, R., 2004. Virus attachment and entry offer numerous targets for antiviral therapy. Curr Pharm Des. 10(30), 3701-12.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Jaiswal, S., Khanna, N., Swaminathan, S., 2004. High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain III protein in Escherichia coli. Protein Expr Purif. 33(1), 80-91  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Vijayasri, S., Agrawal, S., 2005 Domain-based homology modeling and mapping of the conformational epitopes of envelope glycoprotein of west nile virus. J Mol Model. 11(3),248-55  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Jones, C.T., Ma, L., Burgner, J.W., Groesch, T.D., Post, C.B., Kuhn, R.J., 2003.Flavivirus capsid is a dimeric alpha-helical protein. J Virol. 77(12), 7143-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Wallis,T.P., Huang, C.Y., Nimkar, S.B., Young, P.R., Gorman, J.J., 2004.Determination of the disulfide bond arrangement of dengue virus NS1 protein. J Biol Chem. 279(20), 20729-41  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Kumarasamy, V., Chua, S.K., Hassan, Z., Wahab, A.H., Chem, Y.K., Mohamad, M., Chua, K.B., 2007. Evaluating the sensitivity of a commercial dengue NS1 antigencapture ELISA for early diagnosis of acute dengue virus infection. Singapore Med J. 48(7), 669-73  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Arakaki, T.L., Fang, N.X., Fairlie, D.P., Young, P.R., Martin, J.L., 2002. Catalytically active Dengue virus NS3 protease forms aggregates that are separable by size exclusion chromatography. Protein Expr Purif. 025(2), 241-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Robin, G., Chappell, K., Stoermer, M.J., Hu, S.H., Young, P.R., Fairlie, D.P., Martin, J.L., 2009. Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. J Mol Biol. 385(5), 1568-77.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Mastrangelo, E., Milani, M., Bollati, M., Selisko, B., Peyrane, F., Pandini, V., Sorrentino, G., Canard, B., Konarev, P.V., Svergun, D. I., de Lamballerie, X., Coutard, B., Khromykh, A.A., Bolognesi. M., 2007 Crystal structure and activity of Kunjin virus NS3 helicase; protease and helicase domain assembly in the full length NS3 protein. J Mol Biol. 372(2), 444-55  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Melino, S., Fucito, S., Campagna, A., Wrubl, F., Gamarnik, A., Cicero, D.O., Paci, M., 2006.The active essential CFNS3d protein complex. FEBS J. 273(16), 3650-62  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Yap, T.L., Chen, Y.L., Xu, T., Wen, D., Vasudevan, S.G., Lescar, J., 2007. A multi-step strategy to obtain crystals of the dengue virus RNA- dependent RNA polymerase that diffract to high resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun. 63(Pt 2), 78-83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Ma, L., Jones, C.T., Groesch, T.D., Kuhn, R.J., Post, C.B., 2004. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A. 101(10),3414-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Hunt, T.A., Urbanowski, M.D., Kakani, K., Law, L.M., Brinton, M.A., Hobman, T.C., 2007. Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol. 9(11), 2756-66  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Johnson, A.J., Guirakhoo, F., Roehrig, J.T., 1994.The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology. 203(2), 241-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Schneider, G.J., Kuper, K.G., Abravaya, K., Mullen, C.R., Schmidt, M., Bunse-Grassmann, A., Sprenger-Haussels, M., 2009. Performance evaluation of the QIAGEN EZ1 DSP Virus Kit with Abbott RealTime HIV-1, HBV and HCV assays. J Clin Virol. 44(4), 292-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Drexler, J.F., Kupfer, B., Petersen, N., Grotto, R.M., Rodrigues, S.M., Grywna, K., Panning, M., Annan, A., Silva, G.F., Douglas, J., Koay, E.S., Smuts, H., Netto, E.M., Simmonds, P., Pardini, M.I., Roth, W.K., Drosten, C., 2009. A novel diagnostic target in the hepatitis C virus genome. PLoS Med. 6(2), e31.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] da Silveira, N.J., Arcuri, H.A., Bonalumi, C.E., de Souza,F.P., Mello, I.M., Rahal, P., Pinho, J.R., de Azevedo, W.F. Jr., 2005. Molecular models of NS3 protease variants of the Hepatitis C virus. BMC Struct Biol. 5:1  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Mastrangelo, E., Milani, M., Bollati, M., Selisko, B., Peyrane, F., Pandini, V., Sorrentino, G., Canard, B., Konarev, P.V., Svergun, D.I., de Lamballerie, X., Coutard, B., Khromykh, A.A., Bolognesi, M., 2007 Crystal structure and activity of Kunjin virus NS3 helicase; protease and helicase domain assembly in the full length NS3 protein. J Mol Biol. 372(2), 444-55.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Mastrangelo, E., Bollati, M., Milani, M., de Lamballerie, X., Brisbarre, N., Dalle, K., Lantez, V., Egloff, M.P., Coutard, B., Canard, B., Gould, E., Forrester, N., Bolognesi, M., 2006. Preliminary characterization of (nucleoside-2'-O-)- methyltransferase crystals from Meaban and Yokose flaviviruses. Acta Crystallogr Sect F Struct Biol Cryst Commun. 62(Pt 8), 768-70.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Yuan, F., Lou, Z., Li, X., Chen, Y.W., Bell, J.I., Rao, Z., Gao, G.F., 2005. Refolding, crystallization and preliminary X-ray structural studies of the West Nile virus envelope (E) protein domain III. Acta Crystallogr Sect F Struct Biol Cryst Commun. 61(Pt 4), 421-3.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] White, M.A., Liu, D., Holbrook ,M.R., Shope, R.E., Barrett, A.D., Fox, R.O., 2003. Crystallization and preliminary X-ray diffraction analysis of Langat virus envelope protein domain III. Acta Crystallogr D Biol Crystallogr. 59(Pt 6),1049-51.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Gibbons, D.L., Reilly, B., Ahn, A., Vaney, M.C., Vigouroux, A., Rey, F.A., Kielian, M., 2004. Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus. J Virol. 78(7),3514-23  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Stiasny, K., Bressanelli, S., Lepault, J., Rey, F.A., Heinz, F.X., 2004. Characterization of a membraneassociated trimeric low-pH-induced Form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J Virol. 78(6), 3178- 83.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Heinz, F.X., Mandl, C.W., 1993. The molecular biology of tick-borne encephalitis virus. APMIS. 101(10), 735-45.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Heinz, F.X., Mandl, C.W., Holzmann, H., Kunz, C., Harris, B.A., Rey, F., Harrison, S.C., 1991.The flavivirus envelope protein E: isolation of a soluble form from tick-borne encephalitis virus and its crystallization. J Virol. 65(10), 5579- 83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Aoki, C., Hidari, K.I., Itonori, S., Yamada, A., Takahashi, N., Kasama, T., Hasebe, F., Islam, M.A., Hatano, K., Matsuoka, K., Taki, T., Guo, C.T., Takahashi, T., Sakano, Y., Suzuki, T., Miyamoto, D., Sugita, M., Terunuma, D., Morita, K., Suzuki, Y., 2006. Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J Biochem. 139(3), 607-14  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] Wallis, T.P., Huang, C.Y., Nimkar, S.B., Young, P.R., Gorman, J.J., 2004. Determination of the disulfide bond arrangement of dengue virus NS1 protein. J Biol Chem. 279(20), 20729-41  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Dhingra, V., Li, Q., Allison, A.B., Stallknecht, D.E., Fu, Z.F., 2005. Proteomic profiling and neurodegeneration in West-Nilevirus- infected neurons. J Biomed Biotechnol. 2005(3), 271-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Higa, L.M., Caruso, M.B., Canellas, F., Soares, M.R., Oliveira-Carvalho, A.L., Chapeaurouge, D.A., Almeida, P.M., Perales, J., Zingali, R.B., Da Poian, A.T., 2008. Secretome of HepG2 cells infected with dengue virus: implications for pathogenesis. Biochim Biophys Acta. 1784(11), 1607-16  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Kundu, S., Fenters, C., Lopez, M., Varma, A., Brackett, J., Kuemmerle, S., Hunt, J.C., 1997. Capillary electrophoresis for purity estimation and in-process testing of recombinant GB virus-C proteins. J Capillary Electrophor. 4(1), 7-13  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Winkler, G., Heinz, F.X., Guirakhoo, F., Kunz, C., 1985. Separation of flavivirus membrane and capsid proteins by multistep highperformance liquid chromatography optimized by immunological monitoring. J Chromatogr. 326, 113- 9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Mukherjee, R., Chaturvedi, P., Chaturvedi, U.C., 1993 Identification and purification of a receptor on macrophages for the dengue virus-induced suppressor cytokine. Clin Exp Immunol. 91(2),257-65  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Volk, D.E., Chavez, L., Beasley, D.W., Barrett, A.D., Holbrook, M.R., Gorenstein, D.G., 2006.Structure of the envelope protein domain III of Omsk hemorrhagic fever virus. Virology. 351(1),188-95.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[46] McCoy, M.A., Senior, M.M., Gesell, J.J., Ramanathan, L., Wyss, D.F., 2001. Solution structure and dynamics of the single-chain hepatitis C virus NS3 protease NS4A cofactor complex. J Mol Biol. 305(5), 1099-110  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[47] Hull, R., Nattanmai, S., Kramer, L.D., Bernard, K.A., Tavakoli, N.P.,2008. A duplex real-time reverse transcriptase polymerase chain reaction assay for the detection of St. Louis encephalitis and eastern equine encephalitis viruses. Diagn Microbiol Infect Dis. 62(3),272-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[48] Caceda, E.R., Kochel, T.J., 2007. Application of modified shell vial culture procedure for arbovirus detection. PLoS ONE. 2(10):e1034  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[49] Qiu, H., Tang, W., Tong, X., Ding, K., Zuo, J., 2007. Structure elucidation and sulfated derivatives preparation of two alpha-D-glucans from Gastrodia elata Bl. and their antidengue virus bioactivities. Carbohydr Res. 342(15),2230-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[50] Lo, C.L., Yip, S.P., Cheng, P.K., To, T.S., Lim, W.W., Leung, P.H., 2007.One-step rapid reverse transcription-PCR assay for detecting and typing dengue viruses with GC tail and induced fluorescence resonance energy transfer techniques for melting temperature and color multiplexing. Clin Chem. 53(4):594-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[51] Lindsay, R., Barker, I., Nayar, G., Drebot, M., Calvin, S., Scammell, C., Sachvie, C., Fleur, T.S., Dibernardo, A., Andonova, M., Artsob, H., 2003. Rapid antigencapture assay to detect West Nile virus in dead corvids. Emerg Infect Dis. 9(11), 1406-10.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[52] Hernandez, R., Nelson, S., Salm, J.R., Brown, D.T., Alpert, A.J., 2004. Rapid preparative purification of West Nile and Sindbis virus PCR products utilizing a microbore anionexchange column. J Virol Methods. 120(2), 141-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[53] Akimenko, Z.A., Ofitserov, V.I., Shaprov, V.V., Iastrebov, S.I., 1999.HPLC separation and characterization of tick-borne encephalitis and equine Venezuela encephalomyelitis viral proteins. Bioorg Khim. 25(4), 253-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[54] Pastorino, B., Boucomont- Chapeaublanc, E., Peyrefitte, C.N., Belghazi, M., Fusaï, T., Rogier, C., Tolou, H.J., Almeras, L., 2009. Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics. 24  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[55] Dhingra, V., Li, Q., Allison, A.B., Stallknecht, D.E., Fu, Z.F., 2005.Proteomic profiling and neurodegeneration in West-Nilevirus- infected neurons. J Biomed Biotechnol. 2005(3), 271-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[56] Warke, R.V., Martin, K.J., Giaya, K., Shaw, S.K., Rothman, A.L., Bosch, I., 2008.TRAIL is a novel antiviral protein against dengue virus. J Virol. 82(1),555-64  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[57] Chan, Y.L., Chang, T.H., Liao, C.L., Lin, Y.L., 2008. The cellular antiviral protein viperin is attenuated by proteasome-mediated protein degradation in Japanese encephalitis virus-infected cells. J Virol. 82(21), 10455-64  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[58] Sudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S., Yokota ,T., 1997. Novel hepatitis C virus protease inhibitors: thiazolidine derivatives. Biochem Biophys Res Commun. 238(2), 643-7.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[59] Anwar, A., Chandrasekaran, A., Ng, M.L., Marques, E., August, J.T., 2005. West Nile premembraneenvelope genetic vaccine encoded as a chimera containing the transmembrane and cytoplasmic domains of a lysosome-associated membrane protein: increased cellular concentration of the transgene product, targeting to the MHC II compartment, and enhanced neutralizing antibody response. Virology. 332(1), 66-77.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[60] Litovchick, A., Szostak, J.W., 2008 . Selection of cyclic peptide aptamers to HCV IRES RNA using mRNA display. Proc Natl Acad Sci U S A. 105(40), 15293-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[61] Akira, M., and Tetsuro, O., 2008. Viruses and RNA silencing. Uirusu. 58, 61-68  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[62] Gomase, V.S., Tagore, S., 2008. RNAi –A Tool for Target Finding in New Drug Development. Current Drug Metabolism 9(3), 241-244  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[63] Li, F., Ding, S.W., 2006. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol. 60, 503-31  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[64] Pacca, C.C., Severino, A.A., Mondini, A., Rahal, P., D'avila, S.G., Cordeiro, J.A., Nogueira, M.C., Bronzoni, R.V., Nogueira, M.L., 2009. RNA interference inhibits yellow fever virus replication in vitro and in vivo. Virus Genes. 38(2), 224-31  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[65] Adelman, Z.N., Blair, C.D., Carlson, J.O., Beaty, B.J., Olson, K.E., 2001. Sindbis virus-induced silencing of dengue viruses in mosquitoes. : Insect Mol Biol. 10(3), 265-73  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[66] Adelman, Z.N., Sanchez-Vargas, I., Travanty, E.A., Carlson, J.O., Beaty, B.J., Blair, C.D., Olson, K.E., 2002. RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol. 76(24), 12925-33  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[67] Sanchez-Vargas, I., Travanty, E.A., Keene, K.M., Franz, A.W., Beaty, B.J., Blair, C.D., Olson, K.E., 2004. RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res. 102(1), 65-74  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[68] Travanty, E.A., Adelman, Z.N., Franz, A.W., Keene, K.M., Beaty, B.J., Blair, C.D., James, A.A., Olson, K.E., 2004. Using RNA interference to develop dengue virus resistance in genetically modified Aedes aegypti. Insect Biochem Mol Biol. 34(7), 607-13  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[69] Caplen, N.J., Zheng, Z., Falgout, B., Morgan, R.A., 2002. Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther. 6(2), 243-51  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[70] Franz, A.W., Sanchez-Vargas, I., Adelman, Z.N., Blair, C.D., Beaty, B.J., James, A.A., Olson, K.E., 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci U S A. 103(11), 4198-203  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[71] Jasinskiene, N., Coates, C.J., Benedict, M.Q., Cornel, A.J., Rafferty, C.S., James, A.A., Collins, F.H., 1998. Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci U S A. 95(7), 3743-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[72] Krishnan, M.N., Ng, A., Sukumaran, B., Gilfoy, F.D., Uchil, P.D., Sultana, H., Brass, A.L., Adametz, R., Tsui, M., Qian, F., Montgomery, R.R., Lev, S., Mason, P.W., Koski, R.A., Elledge, S.J., Xavier, R.J., Agaisse, H., Fikrig, E., 2008. RNA interference screen for human genes associated with West Nile virus infection. Nature. 455(7210), 242-5.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[73] Yang, Y., Wu, C., Wu, J., Nerurkar, V.R., Yanagihara, R., Lu, Y., 2008. Inhibition of West Nile Virus replication by retrovirus-delivered small interfering RNA in human neuroblastoma cells. J Med Virol. 80(5):930-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[74] Ong, S.P., Choo, B.G., Chu, J.J., Ng, M.L., 2006. Expression of vectorbased small interfering RNA against West Nile virus effectively inhibits virus replication. Antiviral Res. 72(3):216-23.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[75] Pan, Q.W., Henry, S.D., Scholte, B.J., Tilanus, H.W., Janssen, H.L., van der Laan, L.J., 2007. New therapeutic opportunities for hepatitis C based on small RNA. World J Gastroenterol. 13(33), 4431-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[76] Park, J.S., Yang, J.M., Min, M.K., 2000. Hepatitis C virus nonstructural protein NS4B transforms NIH3T3 cells in cooperation with the Ha-ras oncogene. Biochem Biophys Res Commun. 267(2), 581-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[77] Giménez-Barcons, M., Wang, C., Chen, M., Sánchez-Tapias, J.M., Sáiz, J.C., Gale, M. Jr., 2005. The oncogenic potential of hepatitis C virus NS5A sequence variants is associated with PKR regulation. J Interferon Cytokine Res. 25(3):152- 64.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[78] Gale, M. Jr., Blakely, C.M., Kwieciszewski, B., Tan, S.L., Dossett, M., Tang, N.M., Korth, M.J., Polyak, S.J., Gretch, D.R., Katze, M.G., 1998. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol.18(9), 5208-18.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[79] Schuster, R., Gerlich, W.H., Schaefer, S., 2000. Induction of apoptosis by the transactivating domains of the hepatitis B virus X gene leads to suppression of oncogenic transformation of primary rat embryo fibroblasts. Oncogene 19(9):1173- 80.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[80] Wei, W., Huang, W., Pan, Y., Zhu, F., Wu, J., 2006. Functional switch of viral protein HBx on cell apoptosis, transformation, and tumorigenesis in association with oncoprotein Ras. Cancer Lett. 244(1), 119-28  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[81] Arbuthnot, P., Capovilla, A., Kew, M., 2000. Putative role of hepatitis B virus X protein in hepatocarcinogenesis: effects on apoptosis, DNA repair, mitogenactivated protein kinase and JAK/STAT pathways. J Gastroenterol Hepatol. 15(4), 357- 68.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[82] Singh, H., Raghava, G.P.S., 2002. Matrix Optimization Technique for Predicting MHC binding Core. Biotech Software and Internet Report 3, 146  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[83] Cui, J., Han, L.Y., Lin, H.H., Tang, Z.Q., Jiang, L., Cao, Z.W., Chen, Y.Z., 2006. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence derived physicochemical properties. Immunogenetics 58, 607-613  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[84] Bhasin, M., Singh, H., Raghava, G.P.S., 2003. MHCBN: A comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19, 666–667.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[85] Kumar, M., Gromiha, M.M., Raghava, G.P.S., 2007. Identification of DNAbinding proteins using support vector machines and evolutionary profiles. BMC Bioinformatics 8, 463  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[86] Gomase, V.S., Kale, K.V., Shyamkumar, K., 2008. Prediction of MHC Binding Peptides and Epitopes from Groundnut Bud Necrosis Virus (GBNV). Journal of Proteomics & Bioinformatics 1 (4), 188- 205.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[87] Gomase, V.S., Kale, K.V., Shyamkumar, K., Shankar, S., 2008. Computer Aided Multi Parameter Antigen Design: Impact of Synthetic Peptide Vaccines from Soybean Mosaic Virus. ICETET 2008, 629-634  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[88] Gomase, V.S., Tagore, S., Vaccinomics. Gene Therapy and Molecular Biology 12, 141-146  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus