In-silico CHARACTERIZATION OF POLLEN-SPECIFIC PROTEIN BNM1 FROM Arabidopsis thaliana L

Rokade S.S.1*, Tidke J.2, Chikhale N.J.3*
1Department of Botany, Sant Gadge Baba Amravati University, Amravati – 444 602 (M.S.) India
2Department of Botany, Sant Gadge Baba Amravati University, Amravati – 444 602 (M.S.) India
3Shri. Shivaji Agricultural College, Amravati– 444 602 (M.S.) India
* Corresponding Author : jaikirantidke@rediffmail.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 1 - 8
Int J Genom Proteomics 1.1 (2010):1-8
DOI : http://dx.doi.org/10.9735/0976-4887.1.1.1-8

Keywords : Pollen allergy, pollen protein, antigenicity
Conflict of Interest : None declared

Cite - MLA : Rokade S.S., et al "In-silico CHARACTERIZATION OF POLLEN-SPECIFIC PROTEIN BNM1 FROM Arabidopsis thaliana L." International Journal of Genomics and Proteomics 1.1 (2010):1-8. http://dx.doi.org/10.9735/0976-4887.1.1.1-8

Cite - APA : Rokade S.S., Tidke J. , Chikhale N.J. (2010). In-silico CHARACTERIZATION OF POLLEN-SPECIFIC PROTEIN BNM1 FROM Arabidopsis thaliana L. International Journal of Genomics and Proteomics, 1 (1), 1-8. http://dx.doi.org/10.9735/0976-4887.1.1.1-8

Cite - Chicago : Rokade S.S., Tidke J. , and Chikhale N.J. "In-silico CHARACTERIZATION OF POLLEN-SPECIFIC PROTEIN BNM1 FROM Arabidopsis thaliana L." International Journal of Genomics and Proteomics 1, no. 1 (2010):1-8. http://dx.doi.org/10.9735/0976-4887.1.1.1-8

Copyright : © 2010, Rokade S.S., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Pollen allergies (Hey-fever) are the most common and wide spread and released from the plants for the purpose of fertilization and can be carried for miles by the wind. Unfortunately when there is too much pollen in the air, it causes problems to the sensitive persons, causing some ailments and allergic disorders. Therefore, it is prime need to characterize the allergic pollen proteins. In the present investigations, pollen-specific protein Bnm1 from Arabidopsis thaliana was screened in-silico for its allergic and antigenic characters. Pollen-specific protein Bnm1 having 187 amino acids residues, which shows five antigenic determinants. Motif map shows more receptors on B-cell than on T-cell. MHC-class 1 receptors are also found in motif map. Protein statistics is also carried out with respect to several parameters with the help of Peptool 2.0. Predicted results are support to elicit, the pollen-specific protein Bnm1 is allergic.

References

[1] Solomon, W. R. (1986). Aerobiology of pollinosis. J Allergy Clin Immunol; 74: 449 – 461  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Santra, S. C., S. Gupta and S. Chanda (1991). Air pollutant and aeroallergens interaction. Grana; 30: 63 – 66.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Dass, A., A. Singh and A. B. Singh (1995). Impact of exposure of SO2 on pollen morphology and its protein profile. In: 29th Ann Conv Coll Aller and Appl Immunol, Calcuta, Abst. 13  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Carinanos, P., J. Sanchez-Mesa, J. C. Prieto-Baena, A. Lopez, F. Guerra, C. Moreno, E. Dominguez and C. Galan (2002). Pollen allergy releted to the area of residence in the city of Cordoba, South-West Spain. J Environ Monit; 4: 734 – 738.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Valenta, R., M. Duchene, C. Ebner, P. Valent, C. Sillaber, P. Deviller, F. Ferreira, M. Tejkl, H. Edelmann, D. Kraft and O. Scheiner (1992). Profilins constitute a novel family of functional plant pan-allergens. J. Exp. Med.; 175: 377 – 385  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Gomase, V. S., J. A. Tidke and K. V. Kale (2008). Prediction of antigenic MHC binders of calreticulin protein from Parthenium argentatum. International Journal of Bioinformatics; 1 (1): 37 – 44.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Parker, J. M., D. Guo and R. S. Hodges (1986). New hydrophilicity scale derived from highperformance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry; 23;25.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Kolaskar, A. S. and P. C. Tongaonkar (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett; 276:172-174  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Saha, S and Raghava G.P.S. (2006) Prediction of Continuous B-cell Epitopes in an Antigen Using Recurrent Neural Network. Proteins; 65(1):40-48.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Gomase VS and Shyamkumar K. Prediction of antigenic epitopes and MHC binders of neurotoxin alpha-KTx 3.8 from Mesobuthus tamulus sindicus. African Journal of Biotechnology, 8 (23), 6658-6676, 2009  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Garnier, J. and D.J. Osguthorpe and B. Robson (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol.; 120:97-120  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Karplus, P. A. and G. E. Schulz (1985). Prediction of Chain Flexibility in Proteins - A tool for the Selection of Peptide Antigens. Naturwissenschafren; 72:212-3.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus