FUNCTIONAL MODULE ANALYSIS IN METABOLOMICS: CHOKES

Shaily Mehta1, Somnath Tagore2*
1Department of Biotechnology & Bioinformatics, Dr D Y Patil University, Plot 50, Sec 15, CBD Belapur, Navi Mumbai 400614, India
2Department of Biotechnology & Bioinformatics, Dr D Y Patil University, Plot 50, Sec 15, CBD Belapur, Navi Mumbai 400614, India.
* Corresponding Author : somnathtagore@yahoo.co.in

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 1 - 4
Adv Comput Res 1.1 (2009):1-4

Cite - MLA : Shaily Mehta and Somnath Tagore "FUNCTIONAL MODULE ANALYSIS IN METABOLOMICS: CHOKES." Advances in Computational Research 1.1 (2009):1-4.

Cite - APA : Shaily Mehta, Somnath Tagore (2009). FUNCTIONAL MODULE ANALYSIS IN METABOLOMICS: CHOKES. Advances in Computational Research, 1 (1), 1-4.

Cite - Chicago : Shaily Mehta and Somnath Tagore "FUNCTIONAL MODULE ANALYSIS IN METABOLOMICS: CHOKES." Advances in Computational Research 1, no. 1 (2009):1-4.

Copyright : © 2009, Shaily Mehta and Somnath Tagore, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Since recent years the work on biological and metabolic network has been increasing due to the new biological discoveries and essential metabolites. Metabolomics being a burgeoning field, which produces voluminous data that, like other ‘omics’ data, should be seen as a resource that contributes specifically to the former half of an iterative cycle of hypothesis-generating and hypothesis- testing phases. It is becoming increasingly apparent that our ability to generate large quantities of metabolomics or metabolic profiling data will help to open up many previously inaccessible areas of biology various high-throughput techniques are leading to an explosive growth in the size of biological databases and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of these data remains, however, a major scientific challenge. With the study of enzymes and metabolites new pathways can be discovered, which can help in the analysis of the various process taking place in the organism. In order to identify potential drug targets the concept of choke points was used to find enzymes which uniquely consume or produce a particular metabolite. Hence the study of these choke are taken into consideration.

References

[1] Grigorov, M.G. (2005) Global properties of biological networks. Drug Discov. Today, 10, 365–372  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Hartwell, L.H., et al. (1999) From molecular to modular cell biology. Nature, 402, C47–52  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Ravasz, E., et al. (2002) Hierarchical organization of modularity in metabolic networks. Science, 297, 1551– 1555  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Arita, M. (2004) The metabolic world of Escherichia coli is not small. Proc. Natl Acad. Sci. USA, 101, 1543– 1547  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Barabasi, A.L. and Oltvai, Z.N. (2004) Network biology: understanding the cell's functional organization. Nat. Rev. Genet, . 5, 101–113.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Papin, J.A., et al. (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci, . 29, 641– 647  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Girvan, M. and Newman, M.E. (2002) Community structure in social and biological networks. Proc. Natl Acad. Sci. USA, 99, 7821–7826  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Jeong, H., et al. (2000) The large-scale organization of metabolic networks. Nature, 407, 651–654.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Ma, H. and Zeng, A.P. (2003) Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics, 19, 270–277.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Oltvai, Z.N. and Barabasi, A.L. (2002) Systems biology. Life's complexity pyramid. Science, 298, 763–764  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Schuster, S., et al. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol, . 18, 326–332  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Rahman, S.A., et al. (2005) Metabolic pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 21, 1189–1193  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Horne, A.B., et al. (2004) Constructing an enzymecentric view of metabolism. Bioinformatics, 20, 2050– 2055  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Barrett, C.L., et al. (2005) The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc. Natl Acad. Sci. USA, 102, 19103–19108  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Covert, M.W., et al. (2004) Integrating high-throughput and computational data elucidates bacterial networks. Nature, 429, 92–96.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Levchenko, A. (2003) Dynamical and integrative cell signaling: challenges for the new biology. Biotechnol Bioeng, 84, 773–782  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Luscombe, N.M., et al. (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431, 308–312  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Ozbudak, E.M., et al. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Yeh, I., et al. (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res, . 14, 917–924  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] I. Yeh, et al. (2004) Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res., 14: 917  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus