DISTRIBUTION ANALYSIS IN METABOLIC NETWORKS: Power Laws

Sangya Pundir1, Somnath Tagore2*
1Department of Biotechnology & Bioinformatics, Dr D Y Patil University, Plot 50, Sec 15, CBD Belapur, Navi Mumbai 400614, India
2Department of Biotechnology & Bioinformatics, Dr D Y Patil University, Plot 50, Sec 15, CBD Belapur, Navi Mumbai 400614, India
* Corresponding Author : somnathtagore@yahoo.co.in

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 1 - 4
Adv Inform Min 1.1 (2009):1-4

Keywords : Power law, degree, rank, metabolic networks, graph theory, log-log scale.
Conflict of Interest : None declared

Cite - MLA : Sangya Pundir and Somnath Tagore "DISTRIBUTION ANALYSIS IN METABOLIC NETWORKS: Power Laws." Advances in Information Mining 1.1 (2009):1-4.

Cite - APA : Sangya Pundir , Somnath Tagore (2009). DISTRIBUTION ANALYSIS IN METABOLIC NETWORKS: Power Laws. Advances in Information Mining, 1 (1), 1-4.

Cite - Chicago : Sangya Pundir and Somnath Tagore "DISTRIBUTION ANALYSIS IN METABOLIC NETWORKS: Power Laws." Advances in Information Mining 1, no. 1 (2009):1-4.

Copyright : © 2009, Sangya Pundir and Somnath Tagore, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Many new structural patterns have been discovered in diverse biological, social and information networks. One of them are metabolic networks, the most widely studied large scale networks in biology, known to have a power law degree distribution and the exponent _ is observed to be the same for all species. However, empirical evidence elucidating the nature of the process that gives rise to such structure is lacking this far. In this paper we review facts about power law distribution as relevant to metabolic networks. In particular we concentrate on the evolutionary and other implications of such a power law distribution.

References

[1] Fell, DA, Wagner, A. (2000) The small world of metabolism, Nat Biotechnol, 18(11), 11212  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Fersht, A. (1985) Enzyme Structure and Mechanism, 2nd edit, W H Freeman & Co.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Albert, R., Jeong, H., Barabasi, AL. (1999) Internet: diameter of the world-wide web, Nature, 401, 130-131.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Bak, P. (1990) Self-organized criticality, Physica A, 163, 403-409  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Barabasi, AL, Albert, R. (1999) Emergence of scaling in random networks, Science, 286, 509-512  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Benner, SA, Ellington, AD, Tauer, A. (1989) Modern metabolism as a palimpsest of the RNA world, Proc. Natl Acad. Sci. USA, 86, 7054-7058  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Cascante, M., Melendez-Hevia, E., Kholodenko, BN, Sicilia, J, Kacser, H. (1995) Control analysis of transittime for free and enzyme-bound metabolites physiological and evolutionary significance of metabolic response-times, Biochem. J, 308, 895-899  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Chiva, E., Tarroux, P. (1995) Evolution of biological regulation networks under complex environmental constraints, Biol. Cybernet, 73, 323-333  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Babu, M. (2004) Structure and evolution of transcriptional regulatory networks, Current Opinion in Structural Biology, 14, 283–291  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Bar-Joseph, Z. (2003) Computational discovery of gene modules and regulatory networks, Nature Biotechnology, 21(11), 1337–1342.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Barabasi, L., Albert, R. (1999) Emergence of scaling in random networks, Science, 286, 509–512  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Barabasi, L., Oltvai, Z. (2004) Network biology: understanding the cell’s functional organization, Nature Reviews - Genetics, 5, 101–113  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Wagner, A., Fell, DA (2001) The small world inside large metabolic networks, Proc Biol Sci., 268(1478), 1803-1810  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Barthelemy, M. et al. (2005) Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, Journal of Theoretical Biology, 235, 275–288  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Becker, N. et al. (2005) Controlling emerging infectious diseases like SARS, Mathematical Biosciences, 193, 205–221  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Veflingstad, SR, Almeida, J., Voit, EO (2004) Priming nonlinear searches for pathway identification, Theor Biol Med Model, 1, 8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Voit, EO, Almeida, J. (2004) Decoupling dynamical systems for pathway identification from metabolic profiles, Bioinformatics, 20, 1670–1681  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Di Camillo, B., Toffolo, G., Cobelli, C. (2009) A gene network simulator to assess reverse engineering algorithms, Ann N Y Acad Sci., 1158, 125-142.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Seki, K., Mostafa, J. (2009) Discovering implicit associations among critical biological entities, Int J Data Min Bioinform, 3(2), 105-23  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M. (2003) Dynamic modeling of genetic networks using genetic algorithm and S-system, Bioinformatics, 19, 643–650.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Kimura S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa, N., Yokoyama S., Kuramitsu, S., Konagaya, A. (2005) Inference of Ssystem models of genetic networks using a cooperative coevolutionary algorithm, Bioinformatics, 21, 1154– 1163.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Maki, Y., Tominaga, D., Okamoto, M., Watanabe, S., Eguchi, Y. (2001) Development of a system for the inference of large scale genetic networks, Pac Symp Biocomput., 446-458  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Diaz-Sierra, R., Fairen, V. (2001) Simplified method for the computation of parameters of power-law rate equations from time-series, Math Biosci, 171 ,1–19.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Sorribas, A., Lozano, JB, Fairen, V. (1998) Deriving chemical and biochemical model networks from experimental measurements, Recent Res Devel in Physical Chem, 2, 553–573.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Diaz-Sierra, R., Lozano, JB, Fairen, V. (1999) Deduction of chemical mechanisms from the linear response around steady state, J Phys Chem A, 103, 337–343  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Savageau, MA (1976) Biochemical systems analysis: A study of function and design in molecular biology, Addison-Wesley Pub. Co  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] De Atauri, P., Orrell, D., Ramsey, S., Bolouri, H. (2005) Is the regulation of galactose 1-phosphate tuned against gene expression noise? Biochem J, 387, 77–84.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Schmidt, H., Cho, KH, Jacobsen, EW (2005) Identification of small scale biochemical networks based on general type system perturbations, Febs J, 272, 2141– 2151.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Zhao, J., Shimizu, K. (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method, J Biotechnol, 101, 101–117  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Fischer, E., Sauer, U. (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS, Eur J Biochem, 270, 880–891  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, RN, Willmitzer, L. (2000) Metabolite profiling for plant functional genomics, Nat Biotechnol, 18, 1157–1161.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Price, DJ. (1965) Networks of science papers, Science, 149, 510–515  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Samorodnitsky, G., Taqqu, MS (1994) Stable Non- Gaussian Random Processes: Stochastic Models with Infinite Variance, Chapman and Hall, New York - London  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Serrano, MA, Boguna, M. (2005) Tuning clustering in random networks with arbitrary degree distributions, Phys Rev E Stat Nonlin Soft Matter Phys., 72(3 Pt 2), 036133  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Serrano, MA, Boguna, M. (2006) Percolation and epidemic thresholds in clustered networks, Phys Rev Lett., 97(8), 088701  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Simon, HA (1955) On a class of skew distribution functions, Biometrika, 42, 425–440  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Spring, N., Mahajan, R., Wetherall, D., Anderson, T. (2004) Measuring ISP Topologies with Rocketfuel, IEEE/ACM Transactions on Networking, 12, 2–16  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] De Martino, D., Dall'asta, L., Bianconi, G., Marsili, M. (2009) Congestion phenomena on complex networks, Phys Rev E Stat Nonlin Soft Matter Phys., 79(1 Pt 2), 015101  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] Scotti, S., Mauri, M., Barbieri, R., Jawad, B., Cerutti, S., Mainardi, L., Brown, EN, Villamira, MA. (2006) Automatic quantitative evaluation of emotions in Elearning applications, Conf Proc IEEE Eng Med Biol Soc., 1, 1359-1362  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Tanaka, R. (2005) Scale-rich metabolic networks, Phys Rev Lett., 94(16), 168101  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Van Lint, JH, Wilson, RM (1992) A Course in Combinatorics, Cambridge University Press  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Viger, F., Latapy, M. (2005) Efficient and simple generation of random simple connected graphs with prescribed degree sequence, Proceedings of the 11th Conference of Computing & Combinatoric, 154  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Wang, J., Li, L., Low, S., Doyle, JC (2005) Cross-layer optimization in TCP/IP networks, IEEE/ACM Transactions on Networking, 13  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Watts, DJ, Strogatz, SH (1998) Collective dynamics of “small world” networks, Nature, 393  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Waxman, BM (1988) Routing of multipoint connections, IEEE Journal of Selected Areas in Communications, 6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[46] Gómez-Gardeñes, J, Latora, V. (2008) Entropy rate of diffusion processes on complex networks, Phys Rev E Stat Nonlin Soft Matter Phys., 78(6 Pt 2), 065102  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[47] Priesemann, V., Munk, MH, Wibral, M. (2009) Subsampling effects in neuronal avalanche distributions recorded in vivo, BMC Neurosci., 10, 40  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[48] Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S. (2002) Scaling phenomena in the internet: Critically examining criticality, Proceedings of the National Academy of Sciences, 99, 2573–2580  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[49] Yook, SH, Jeong, H., Barabasi, AL (2002) Modeling the internet’s large-scale topology, Proceedings of the National Academy of Sciences, 99, 13382–13386  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[50] Yule, G. (1925) A mathematical theory of evolution based on the conclusions of Dr. J. C. Willis, Philosophical Transactions of the Royal Society of London (Series B), 213, 21–87.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[51] Zegura, E., Calvert, KL, Donahoo, MJ (1997) A quantitative comparison of graphbased models for internet topology, IEEE/ACM Transactions on Networking, 5(6).  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[52] Sanchirico, A., Fiorentino, M. (2008) Scale-free networks as entropy competition, Phys Rev E Stat Nonlin Soft Matter Phys., 78(4 Pt 2), 046114  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus