PREDICTION OF ANTIGENIC PEPTIDES OF LASIOTOXIN-2 (LPTX2) FROM LASIODORA PARAHYBANA

Gomase V.S.1*, Shyamkumar K.2
1Proteomics Unit, Department of Bioinformatics, Padmashree Dr. D. Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, MS, India
2Proteomics Unit, Department of Bioinformatics, Padmashree Dr. D. Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, MS, India
* Corresponding Author : Mailvirusgene1@yahoo.co.in

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 1 - 4
Int J Parasitol Res 1.1 (2009):1-4
DOI : http://dx.doi.org/10.9735/0975-3702.1.1.1-4

Keywords : Antigen, Epitope, PSSM, SVM, MHC, Peptide vaccine
Conflict of Interest : None declared

Cite - MLA : Gomase V.S. and Shyamkumar K. "PREDICTION OF ANTIGENIC PEPTIDES OF LASIOTOXIN-2 (LPTX2) FROM LASIODORA PARAHYBANA." International Journal of Parasitology Research 1.1 (2009):1-4. http://dx.doi.org/10.9735/0975-3702.1.1.1-4

Cite - APA : Gomase V.S., Shyamkumar K. (2009). PREDICTION OF ANTIGENIC PEPTIDES OF LASIOTOXIN-2 (LPTX2) FROM LASIODORA PARAHYBANA. International Journal of Parasitology Research, 1 (1), 1-4. http://dx.doi.org/10.9735/0975-3702.1.1.1-4

Cite - Chicago : Gomase V.S. and Shyamkumar K. "PREDICTION OF ANTIGENIC PEPTIDES OF LASIOTOXIN-2 (LPTX2) FROM LASIODORA PARAHYBANA." International Journal of Parasitology Research 1, no. 1 (2009):1-4. http://dx.doi.org/10.9735/0975-3702.1.1.1-4

Copyright : © 2009, Gomase V.S. and Shyamkumar K., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The toxin Lasiotoxin-2 (LpTX2) is a 49aa residue peptide is isolated from the venom of Lasiodora parahybana. In this assay we have predicted the binding affinity of toxin Lasiotoxin-2 (LpTX2) having 49 amino acids, which shows 41 nonamers. Peptide fragments of the neurotoxin can be used to select nonamers for use in rational vaccine design and to increase the understanding of roles of the immune system in neurotoxin studies. Small segment ‘11-KEGKPCKPKGCKCNDKDNKDHKKCS-36’ of toxin protein called the antigenic epitopes is sufficient for eliciting the desired immune response. Immunization cassettes should be capable of immunizing of broad immunity against both humoral and cellular epitope thus giving vaccines the maximum ability to deal with neurotoxin protein of Opisthacanthus madagascariensis. Binding ability prediction of antigen peptides to MHC class molecules is important in vaccine development, We also found the SVM based MHCII-IAb peptide regions,26- DKDNKDHKK, 27- KDNKDHKKC, 8-CDIKKEGKP, 5- TLECDIKKE, (optimal score is 0.557); MHCII-IAd peptide regions, 32-HKKCSGGWR, 9- DIKKEGKPC, 20- KGCKCNDKD, 35- CSGGWRCKL, (optimal score is0.363);MHCII-IAg7 peptide regions, 13-EGKPCKPKG, 3- ECTLECDIK ,37- GGWRCKLKL, 22- CKCNDKDNK, (optimal score is 0.988); and MHCII- RT1.B peptide regions, 1- FFECTLECD, 5-TLECDIKKE, 22- CKCNDKDNK, 40- RCKLKLCLK, (optimal score is 0.556) which represented predicted binders from neurotoxin protein. We have predicted a successful immunization.

References

[1] Stanley A. Schultz Marguerite J. Schultz, Tarantula Keeper's Guide (1998),Barron's Educational Series Inc., U.S. Page 127  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Santos PS, Schinemann JA, Gabardo J, Bicalho Mda G. New evidence that the MHC influences odor perception in humans: a study with 58 Southern Brazilian students. Horm Behav. 2005 Apr;47(4):384-8  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Escoubas P., Celerier M.-L., Romi-Lebrun R., Nakajima T. Two novel peptide neurotoxins from the venom of the tarantula Lasiodora parahybana. Toxicon 35:805-806, 1996.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Singh, H. and Raghava, G. P. S. Biotech Software and Internet Report, 3:146) (2002)  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Bhasin, M., Singh, H., and Raghava, G.P.S. MHCBN: A comprehensive database of MHC binding and non-binding peptides. Bioinformatics 19: 666–667. 2003  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Cui J, Han LY, Lin HH, Tang ZQ, Jiang L, Cao ZW, Chen YZ. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties. Immunogenetics. 2006 Aug;58(8):607-13. Epub 2006 Jul 11.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Kumar M, Gromiha MM, Raghava GP. Identification of DNA-binding proteins using support vector machines and evolutionary profiles.BMC Bioinformatics. 2007 Nov 27;8(1):463  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Manoj Bhasin and G.P.S. Raghava Analysis and prediction of affinity of TAP binding peptides using cascade SVM, Protein Science (2004), 13:596-607.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Gomase V.S., Kale K.V., Chikhale N.J., Changbhale S.S. Prediction of MHC Binding Peptides and Epitopes from Alfalfa mosaic virus. Curr. Drug Discov. Technol. 2007 Jun; 4(2):117- 1215.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Schirle, M., Weinschenk, T. and Stevanovic, S. (2001) Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J Immunol Methods, 257, 1– 16.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Margulies, D.H. 1997. Interactions of TCRs with MHC-peptide complexes: a quantitative basis for mechanistic models. Curr Opin Immunol 9:390– 395.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus