THE ADAPTIVE CHANGES OF THE OXIDATIVE PENTOSE PHOSPHATE PATHWAY IN RESPONSE TO OXIDATIVE STRESS INDUCED BY COPPER AND ZINC DEFICIENCY IN LUNG OF FEMALE RATS

FARES K KHALIFA1*
1Biochemistry and Nutrition Department, Women’s College, Ain Shams University, Cairo, Egypt.
* Corresponding Author : dr_fares_asu@yahoo.com

Received : 21-12-2011     Accepted : 29-12-2011     Published : 30-12-2011
Volume : 2     Issue : 1       Pages : 10 - 15
J Clin Res Lett 2.1 (2011):10-15
DOI : http://dx.doi.org/10.9735/0976-7061.2.1.10-15

Keywords : Oxidative stress, Pentose phosphate pathway, Copper-Zinc deficiency
Conflict of Interest : None declared

Cite - MLA : FARES K KHALIFA "THE ADAPTIVE CHANGES OF THE OXIDATIVE PENTOSE PHOSPHATE PATHWAY IN RESPONSE TO OXIDATIVE STRESS INDUCED BY COPPER AND ZINC DEFICIENCY IN LUNG OF FEMALE RATS." Journal of Clinical Research Letters 2.1 (2011):10-15. http://dx.doi.org/10.9735/0976-7061.2.1.10-15

Cite - APA : FARES K KHALIFA (2011). THE ADAPTIVE CHANGES OF THE OXIDATIVE PENTOSE PHOSPHATE PATHWAY IN RESPONSE TO OXIDATIVE STRESS INDUCED BY COPPER AND ZINC DEFICIENCY IN LUNG OF FEMALE RATS. Journal of Clinical Research Letters, 2 (1), 10-15. http://dx.doi.org/10.9735/0976-7061.2.1.10-15

Cite - Chicago : FARES K KHALIFA "THE ADAPTIVE CHANGES OF THE OXIDATIVE PENTOSE PHOSPHATE PATHWAY IN RESPONSE TO OXIDATIVE STRESS INDUCED BY COPPER AND ZINC DEFICIENCY IN LUNG OF FEMALE RATS." Journal of Clinical Research Letters 2, no. 1 (2011):10-15. http://dx.doi.org/10.9735/0976-7061.2.1.10-15

Copyright : © 2011, FARES K KHALIFA, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The purpose of the present study was to assess and examine the links among zinc and/or copper deficiency, oxidative stress and the adaptive changes of the oxidative phase of the pentose phosphate pathway in lung of adult female rats fed diets deficient in copper and/or zinc. Four groups each of ten adult female Albino rats (Sprague-Dawely) strain, mean weight varied between 80.2 to 82.5 g were fed on basal control diet (CD), copper deficient diet (-CuD), zinc deficient diet (-ZnD), and diet deficient in both of copper and zinc (-CuZnD). Serum and lung were analyzed for enzymatic and nonenzymatic primary defense system components. Serum and lung Cu and Zn levels were lowered significantly (p<0.01) in – CuD, -ZnD, and -CuZnD rats. The activities of erythrocyte CuZnSOD, lung catalase and GPx were reduced in all deficient rats. Lung content of GSH, GSSG, and ascorbate were significantly reduced by feeding Cu and/or zinc deficient diets. Serum MDA content was increased in rats fed diets deficient in copper and/or zinc groups. Lung activities of oxidative pentose phosphate pathway enzymes (G6PDH and 6PGDH) were significantly increased by Cu and/or zinc deficiency. The present study concluded that, the oxidative stress induced by feeding diets deficient in Cu and/or Zn result in changes in the oxPPP enzymes activities (G6PDH and 6PGDH). The oxPPP maintains the redox potential and adapts these changes to protect against oxidative stress by NADPH generation, which is required for detoxification of free radicals and peroxides.

References

[1] Wamelink M.M., Struys E.A., Jakobs C. (2008) J Inherit Metab Dis; 31:703–717.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Pollak N., Do¨ lle C., Ziegler M. (2007) Biochem J; 402: 205–218.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Pérez-Crespo M., Ramírez M.A., Fernández- González R., Rizos D., Lonergan P., Pintado B. (2005) Molecular Reproduction and Development; 72(4): 502-510.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Stefan I Liochev, Irwin Fridovich (2010) Free Radical Biology and Medicine; 48(12):1565-1569.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Yang Song, Valerie Elias, Andrei Loban, Angus G. Scrimgeour (2010) Emily Ho. Free Radical Biology and Medicine; 48(1): Pages 82-88.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Yun-Zhong Fang, Sheng Yang, Guoyao Wu. (2002) Nutrition; 18:872– 879  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Katri Koli, Marjukka Myllärniemi, Jorma Keski-Oja, Vuokko L Kinnula (2008) Antioxidants Redox Signaling; 10(2): 333-342.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Kyaw A. (1978) Clinica Chimica Acta.; 86(2):153- 157.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Ohkawa H., Ohishi W., Yagi K. (1979) Biochem;95:351-358.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Sunderman F.W., Hum J.R. (1973) Pathol; 4:549- 582.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Nishikimi M., Rao N.A., Yagi K. (1972) Biochem Biophys Res Commun; 46: 849-853.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Paglia D.E., Valentine W.N. (1967) J Lab Clin Med; 70:158-169.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Aebi H. (1984) Methods in Enzymology; 105:121- 126.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Beutler E., Duron O., Kelly B.M. (1963) J Lab Clin Med; 61:882-888.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Deutsch J. (1983) Methods of Enzymatic Analysis; (H.U. Bergmeyer, ed.) Verlag Chemie, Weinheim, pp. 190-197.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Horecker B.L., Smymiotis P.Z. (1955) Methods Enzymol. 1: 323-321.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Felicity Johnson, Cecilia Giulivi (2005) Molecular Aspects of Medicine; 26:340-352.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Byung-Eun Kim, Michelle L Turski, Yasuhiro Nose, Michelle Casad (2010) Cell Metabolism; 11(5):353-363.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Chin F Ng, Freya Q Schafer, Garry R Buettner, Rodgers V.G. (2007) Free Radical Research; 41(11): 1201-1211.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Jack T. Saari Can (2000) J. Physiol. Pharmacol; 78: 848–855.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Klaudia Jomova, Marian Valko (2011) Toxicology; 283(2): 65-87.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Gora Dadheech, Sandhya Mishra, Shiv Gautam, Praveen Sharma (2006) Indian J Clinical Biochemistry; 6(2): 34-38.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Terttu Harju, Witold Mazur, Heta Merikallio, Ylermi Soini, Vuokko L Kinnula (2008) Respiratory Research; 9:80-89.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Jason F Harrison, Scott B Hollensworth, Douglas R Spitz1, William C Copeland (2005) Nucleic Acids Research; 33(14): 4660–4671.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Nabil Elsayed, Allen Hacker, Klaus Kuehn, Gerhard Schrauzer (1982) Biochemical Biophysical Research Communications; 104(2): 564-569.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Rakhee S. Gupte, Dhawjbahadur K. Rawat, Sukrutha Chettimada, Donna L. Cioffi (2010) J Biological Chemistry; 285(25): 19561–19571.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Zhenyu Tang, Ciying Xiao, Yingping Zhuang, Ju Chu, Siliang Zhang (2011) Enzyme Microbial Technology; 49(1):17-24  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Anna L. Peters, Cornelis J.F. (2009) J Histochemistry Cytochemistry; 57(11): 1003– 1011.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Nuray N Ulusu, Meral Sahilli, Aslihan Avci, Orhan Canbolat, Gülgün Ozansoy (2003) Neurochemical Research; 28(6): 815–823.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Andras Perl, Robert Hanczko, Tiffany Telarico, Zachary Oaks, Steve Landas (2011) Trends in Molecular Medicine; 17 (7):395-403.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Jean-François Lesgards, Cyrielle Gauthier, Juan Iovanna, Nicolas Vidal, Alain Dolla, Pierre Stocker (2011) Chemico-Biological Interactions; 190(1): 28-34.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Strain J.J. (1994) Proceedings Nutrition Society; 53:583-598.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus