Bacterial resistance to oxytetracycline in different life stages of Indian freshwater carp aquaculture system

Singh R.K.1*, Singh A.K.2, Rathore G.3, Singh V.4, Mani I.5, Mishra S.K.6, Mishra B.N.7, Verma O.P.8
1Department of Biotechnology, IMS Engineering College, Ghaziabad
2Department of Molecular Biology and Genetic Engineering, Allahabad Agricultural Institute-Deemed University
3Division of Microbiology and Quarantine section, National Bureau of Fish Genetic Resources
4Division of Microbiology and Quarantine section, National Bureau of Fish Genetic Resources
5Division of Microbiology and Quarantine section, National Bureau of Fish Genetic Resources
6Department of Biotechnology, IMS Engineering College, Ghaziabad
7Department of Biotechnology, Institute of Engineering and Technology
8Department of Molecular Biology and Genetic Engineering, Allahabad Agricultural Institute-Deemed University
* Corresponding Author : rksingh.iitr@hotmail.com

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 25 - 34
Int J Microbiol Res 1.1 (2009):25-34
DOI : http://dx.doi.org/10.9735/0975-5276.1.1.25-34

Keywords : Oxytetracycline; Bacteria; Antimicrobial resistance; Aquaculture system; Minimum inhibitory concentration
Conflict of Interest : None declared

Cite - MLA : Singh R.K., et al "Bacterial resistance to oxytetracycline in different life stages of Indian freshwater carp aquaculture system." International Journal of Microbiology Research 1.1 (2009):25-34. http://dx.doi.org/10.9735/0975-5276.1.1.25-34

Cite - APA : Singh R.K., Singh A.K., Rathore G., Singh V., Mani I., Mishra S.K., Mishra B.N., Verma O.P. (2009). Bacterial resistance to oxytetracycline in different life stages of Indian freshwater carp aquaculture system. International Journal of Microbiology Research, 1 (1), 25-34. http://dx.doi.org/10.9735/0975-5276.1.1.25-34

Cite - Chicago : Singh R.K., Singh A.K., Rathore G., Singh V., Mani I., Mishra S.K., Mishra B.N., and Verma O.P. "Bacterial resistance to oxytetracycline in different life stages of Indian freshwater carp aquaculture system." International Journal of Microbiology Research 1, no. 1 (2009):25-34. http://dx.doi.org/10.9735/0975-5276.1.1.25-34

Copyright : © 2009, Singh R.K., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

In India antibiotics are frequently used for preventing and controlling bacterial pathogens in carp aquaculture system, yet no studies have been performed to evaluate the ecological impact of its intensive and prolonged use. In this work the frequency of oxytetracycline-resistant bacteria from water, palletized feed and different life stages of fish from Indian freshwater carp aquaculture system as well as the level of resistance of selected strains was investigated. Viable as well as antibiotic-resistant bacterial counts were performed by spread plate method in culture media supplemented with the oxytetracycline. Sixty two resistant Gram negative isolates which represented the oxytetracycline-resistant bacterial population, were randomly selected on nutrient agar supplemented with oxytetracycline (50μg/ml) from carp farms and feed pellet samples. Among these bacterial isolates Flavobacterium (21%), Alcaligenes (14.5%), Aeromonas (11%), Pseudomonas (10%) and Enterobacteriace (19%) were the most frequent. The Escherichia, Serratia, Citrobacter, Enterobacter, Shigella and Proteus from Enterobacteriace were recovered. Twelve isolates of oxytetracycline resistant bacteria were mainly dominated in adult fishes by the genus Flavobacterium (23%) and Enterobacteriace(41%). Selected strains exhibited high levels of oxytetracycline resistance with minimum inhibitory concentrations (MICs) ranging from 50 to 600μg/ml.This study shows the presence of an important population of oxytetracycline-resistant bacteria in the microflora of Indian carp aquaculture farms. Therefore the environment of these farms might play important roles as reservoirs of bacteria carrying genetic determinants for high level tetracycline resistance, prompting an important risk to public health.

References

[1] Anderson I.G., Shamsudin M.N. and Nash G. (1989) Aquaculture, 81: 213- 223  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Aoki T. (1997) Resistance plasmids and the risk of transfer. In: Bernoth EM, ed. Furunculosis: multidisciplinary fish disease research. London, Academic Press: 433-440  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Aoki T. (1992) Present and future problems concerning the development of resistance in aquaculture. In: Michel, C., Alderman, and D.J. (Eds.), Chemotherapy in aquaculture: From theory to Reality. Office International des Epizooties, Paris. pp. 254-262  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Barnes A.C., Lewin C.S., Hastings T.S., Amyes S.G.B., (1990) FEMS. Microbial. Lett. 22, 337-340  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Bjorklund H. (1991) oxytetracycline and oxolinic acid as antimicrobials in aquaculture analysis, pharmacokinetics and environmental impact. Thesis. Abo university, Finland  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Bjorklund H., Raberg E.M.I., Bylund G. (1991) Aquaculture. 97, 85-96  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Chopra I., Roberts M. (2001) Microbiol. Mol. Rev. 65, 232-260  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] De Paola A. (1995) J. Aquat. Anim. health 7, 155-160  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Gould I.M. (1999) J. antimicrob. Chemother. 43, 459-465  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Hansen P.K., Lunestad B.T., Samuelsen O.B. (1993) Can.J.Microbiol. 39, 1307-1312  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Hjeltnes B., Anderson K., Egidius E. (1987) Bull. Eur. Assoc. Fish Pathol. 7,85.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Husevag B., Lunestad B.T., Johannessen P.J., Enger O., Samuelsen O.B. (1991) J.Fish Dis.14, 631-640.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Kadavy D.R., Hornby J.M., Haverkost T., Nickerson K.W.(2000) Appl. Environ. Microbiol. 66, 4615-4619  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Levy S.B. (1989) J. Antimicrob. Chemother. 24, 1-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Mc Phearson R.M. Depaola A., Zywno S.R., Motes Jr. M.L., Guarino A.M., (1991) Aquaculture 99, 203-211  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Midtvedt T., Lingaas E. (1992) Putative public health risks of antibiotic resistance development in aquatic bacteria. In: Michel., C, Alderman, D.J.(Eds.), Chemotherapy in aquaculture in aquaculture: From theory to reality, office international des epizooties, paris, pp. 302-314  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Miranda C.D., Castillo G. (1998) Sci. Total environ. 224, 167-176  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Miranda C.D., Zemelman R. (2002) Aquaculture, 212, 31-47.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Rahim Z., Sanyal S.C., Aziz K.M.S., Huq. M.I., Chawdhary A.A. (1984) Appl. Environ. Microbiol. 48, 865-867  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Richards R.H., Inglis V., Frerichs G.N., Miller S.D. (1991) Variation in antibiotic resistance patterns of Aeromonas salmonicida isolated from Atlantic Salmon Salar L. in Scotland. Working papers from the conference: Problems of chemotherapy from Theory to Reality, Paris, 12-15 March, 1991  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Samuelsen O.B., Torsvik V., Ervik A. (1992) Sci. Total Environ. 114, 25-36.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Sandaa R.A., Torsvik V.L., Goksoyr J. (1992) Can. J. Microbiol. 38, 1061- 1065.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Sande M.A. and Mandell G.L. (1985) Antimicrobial agents: Tetracyclines and chloramphenicol: In: The pharmacological basis of Therapeutics. A.G. Gilman, L.S. Goodman, T.W.Roll and F.Murad (Eds.), Mac Millan Publishing Co. New York, P. 1170-1198.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Schimdt A.S., Bruun M.S., Dalsgaard I., Larsen J.L. (2001) Appl. Environ. Microbiol. 67, 5675-5862  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Shotts E.B., Vander work V.L. and Campbell L.M. (1976) J. Fish. Res. Bd. Can., 33; 736-740  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Smith P., Brogan L., Brophy N., Frawley M., Collins D. (1997) Abstr. VIIIth Eur. Assoc. Fish Pathol. (Edinburgh), P. 117  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Sorum H. (1998) APMIS, 106, 74-76.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Spanggaard B., Jorgensen F., Gram L., Huss H.H. (1993) Aquaculture, 115, 195-207.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Stewart G.J, Sinigalliano C.D. (1990) Applied and Environmental Microbiology 56:1818-1824  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Tsoumas A. Alderman D.J., Rodgers C.J. (1989) J. Fish Dis. 12, 493-507  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Vaughan S., Coyne R., Smith P. (1996) Aquaculture 139, 47-54.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Watanabe T.T., Aoki Y., Ogata Y., Egusa, S. (1977) Annuals of the New York Academy of Science. 182:383-410  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Williams R.R., Bell T.A and Lightner D.V. (1992) J. Aqua. Anim. Health., 4: 262- 270  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Young H.K. (1993) J. Antimicrob. Chemother. 31, 627-635  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus