PULSE LIGHT TECHNOLOGY: A NOVEL METHOD FOR FOOD PRESERVATION

T. SARDAR1, S. CHOWDHURY2, P. MURMU3, S. NATH4*, S. CHAKRABARTI5
1Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
2Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
3Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
4Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
5Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
* Corresponding Author : swarnadyutinath@gmail.com

Received : 01-02-2021     Accepted : 26-02-2021     Published : 28-02-2021
Volume : 13     Issue : 2       Pages : 10627 - 10631
Int J Agr Sci 13.2 (2021):10627-10631

Keywords : Pulsed light, Food safety, Non-thermal processing, Minimally processed, Microbial load
Academic Editor : Dr Vipul N Kapadia
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, West Bengal, India
Author Contribution : All authors equally contributed

Cite - MLA : SARDAR, T., et al "PULSE LIGHT TECHNOLOGY: A NOVEL METHOD FOR FOOD PRESERVATION." International Journal of Agriculture Sciences 13.2 (2021):10627-10631.

Cite - APA : SARDAR, T., CHOWDHURY, S., MURMU, P., NATH, S., CHAKRABARTI, S. (2021). PULSE LIGHT TECHNOLOGY: A NOVEL METHOD FOR FOOD PRESERVATION. International Journal of Agriculture Sciences, 13 (2), 10627-10631.

Cite - Chicago : SARDAR, T., S. CHOWDHURY, P. MURMU, S. NATH, and S. CHAKRABARTI. "PULSE LIGHT TECHNOLOGY: A NOVEL METHOD FOR FOOD PRESERVATION." International Journal of Agriculture Sciences 13, no. 2 (2021):10627-10631.

Copyright : © 2021, T. SARDAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The present globalized food industries ensure the health, nutrition and convenience of the food by application of advanced preservation techniques and food quality management. Fish and fishery products have attracted considerable attention as a source of high amounts of important nutritional components like high-quality protein, essential vitamins, minerals and healthful polyunsaturated fatty acids to the human diet. Thus, followed by drinkable yogurt (18%) and fresh soup (18%) among all the food products, fresh fish and seafood products secure third rank worldwide considering the fastest overall growth. Consumption of both freshwater and marine fish is expected to increase in the future. Due to highly perishable in nature fish is highly susceptible to spoilage, due to intrinsic and extrinsic factors. Present day consumers’ preferences for fresh alike high-quality food products leads to the development of non-thermal technologies to retain high organoleptic quality and necessary nutritional attributes without potential health risk. Pulsed light (PL), an alternative to continuous ultraviolet light treatments for both solid and liquid foods, is an emerging non-thermal technology for preservation of food surfaces and food packages, consisting of short time high-peak pulses of broad-spectrum white light, thus, food quality is ensured. Due to perishable nature of fish and fishery products, they are prone to spoilage by food spoilage microorganism and potential human pathogens, which can alternatively be delayed by microbial inactivation with PL treatments on food, thus increasing the shelf life. Here is an extensive review; in-depth, and up-to-date analysis of existing information available in the last 20 years of scientific literatures regarding the principles, mechanisms of microbial inactivation, and applications of PL treatments on foods

References

1. Sharma R. R. and Demirci A. (2003) Journal of Food Science 68, 1448-1453.
2. Roberts P. and Hope A. (2003) Journal of Virological Methods 110, 61-65.
3. Rowan N. J., MacGregor S. J., Anderson J. G., Fouracre R. A., Mcllvaney L. and Farish O. (1999) Applied and Environmental Microbiology 65, 1312-1315.
4. Marquenie D., Geeraerd A. H., Lammertyn J., Soontjens C., Van I. J. F., Michiels C. W. and Nicolai B. M. (2003) International Journal of Food Microbiology 85, 185-196.
5. Gomez-Lopez V. M., Ragaert P., Debevere J. and Devlieghere F. (2007) Trends in Food Science & Technology 18(9), 464-473.
6. Cheigh C. I., Hwang H. J. and Chung M. S. (2013) Food Research International 54(1), 745-752.
7. Anderson J. G., Rowan N. J., MacGregor S. J., Fouracre R. A. and Farish O. (2000) IEEE Transactions on Plasma Science 28, 83-88.846.
8. Wekhof A. (2000) PDA Journal of Pharmaceutical Science and Technology 54, 264-276.
9. Wekhof A., Trompeter F. J. and Franken O. (2001) The first international conference on ultraviolet technologies. Washington D.C. USA.
10. Takeshita K., Shibato J., Sameshima T., Fukunaga S., Isobe S. and Arihara K. (2003) International Journal of Food Microbiology 85, 151-158.
11. Wuytack E. Y., Phuong L. D. T., Aertsen A., Reyns K. M. F., Marquenie D., Ketelaere D. B., Masschalck B., Van Opstal I., Diels A. M. J. and Michiels C. W. (2003) Journal of Food Protection 66, 31-37.
12. Chang J. C., Ossoff S.F., Lobe D.C., Dorfman M.H., Dumais C.M., Qualls R.G. and Johnson J.D. (1985) Applied Environmental Microbiology 49, 1361-1365.
13. Bank H. L., John J., Schmehl M. and Dracht R. K. (1990) Applied and Environmental Microbiology 60, 3888-3889.
14. Miller R., Jeffry W., Mitchell D. and Elasri M. (1999) American Society for Microbiology (ASM) News 65, 535-541.
15. Mitchell D. L., Jen J. and Cleaver J. E. (1992) Nucleic Acids Research 20, 225-229.
16. Giese N. and Darby J. (2000) Water Research 34, 4007- 4013.
17. McDonald K. F., Curry R. D., Clevenger T. E., Unklesbay K., Eisenstark A., Golden J. and Morgan R. D. (2000) IEEE Transactions on Plasma Science 28(5), 1581-1587.
18. Panico L. (2004) U.S. Patent Application No. 10/319,102.
19. Wang T., MacGregor S. J., Anderson J. G. and Woolsey G. A. (2005) Water research 39(13), 2921-2925.
20. Abida J., Rayees B. and Masoodi F. A. (2014) International Food Research Journal 21(3), 839-848.
21. Proctor A. (2011) In Proctor, A. (Ed). Arkansass, USA, Royal Society of Chemistry (RSC), p. 200.
22. Palmieri L. and Cacace D. (2005) In Emerging technologies for food processing (pp. 279-306). Academic Press.
23. Dunn J., Ott T. and Clark W. (1995) Food Technology 49 (9), 95- 98.
24. Bushnell A., Cooper J. R., Dunn J., Leo F., and May R. (1998) Pharmaceutical Engineering 18(2), 48-58.
25. Ohlsson T. and Bengtsson N. (2002) In Ohlsson T. and Bengtsson N. (Eds). Cambridge, England, Woodhead Publishing, p. 112. CRC Press.
26. Green S., Basaran N. and Swanson B. (2005) In Zenthen, P. and Bogh Sorenson, L. (Eds). Washington, United States of America, Woodhead Publishing House, p. 365 CRC press.
27. Bhavya M. L. and Umesh Hebbar H. (2017) Food Quality and Safety 1(3), 187-202.
28. Caminiti I. M., Noci F., Munoz A., Whyte P., Morgan D. J. and Cronin D. A. (2011) Journal of Food Chemistry 124(4), 1387- 1392.
29. Brown A. C. (2008) In Brown A.C. (3rd Eds). Belmont, CA, Thompson/Wadsworth publishing, p. 47.
30. Hiramoto T. (1984) U.S. Patent No. 4,464,336. Washington, DC, U.S. Patent and Trademark Office.