TOWARDS ENGINEERING DROUGHT TOLERANCE IN TOMATO

G.B.S. SAJJAN1, H. RAHMAN2, R. KAMBALE3, M. RAVEENDRAN4*
1Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
2Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
3Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
4Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
* Corresponding Author : raveendrantnau@gmail.com

Received : 15-07-2019     Accepted : 26-07-2019     Published : 30-07-2019
Volume : 11     Issue : 14       Pages : 8788 - 8791
Int J Agr Sci 11.14 (2019):8788-8791

Keywords : Tomato, Drought tolerance, NAC, Agrobacterium-mediated transformation
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
Author Contribution : All authors equally contributed

Cite - MLA : SAJJAN, G.B.S., et al "TOWARDS ENGINEERING DROUGHT TOLERANCE IN TOMATO." International Journal of Agriculture Sciences 11.14 (2019):8788-8791.

Cite - APA : SAJJAN, G.B.S., RAHMAN, H., KAMBALE, R., RAVEENDRAN, M. (2019). TOWARDS ENGINEERING DROUGHT TOLERANCE IN TOMATO. International Journal of Agriculture Sciences, 11 (14), 8788-8791.

Cite - Chicago : SAJJAN, G.B.S., H. RAHMAN, R. KAMBALE, and M. RAVEENDRAN. "TOWARDS ENGINEERING DROUGHT TOLERANCE IN TOMATO." International Journal of Agriculture Sciences 11, no. 14 (2019):8788-8791.

Copyright : © 2019, G.B.S. SAJJAN, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Drought is one of the major abiotic stresses limiting tomato productivity and progress in development of drought tolerant tomato varieties is slow due to complex nature of tolerance mechanisms. Genetic engineering seems to be a viable approach for genetic manipulation of drought tolerance related traits in tomato. The present study was aimed at developing drought tolerant tomato (PKM 1) plants exhibiting enhanced expression of EcNAC67 (a transcription factor controlling drought/salinity tolerance in finger millet) through genetic engineering. Seeds of PKM 1 tomato were germinated on MS medium and 7 - 9 days old cotyledonary leaves were used as explants for co-cultivation with Agrobacterium harboring a plant transformation vector pCAMBIA1300 engineered with EcNAC67. Co-cultivated explants were subjected to selection on media containing Hygromycin (10 mg/L) and putative transgenic plants were regenerated on MS+B5 media containing Zeatin at 1 mg/L concentration. Regenerated shoots were transferred to rooting media containing IBA (1 mg/L) and rooted plants were hardened and transferred to greenhouse for establishment. Putative transgenic (T0) tomato plants were screened through PCR analysis using EcNAC67 specific primers which confirmed the presence of transgene.

References

1. FAOSTAT 2016. http://faostat.fa.org/home.
2. Raiola A., Rigano M.M., Calafiore R., Frusciante L. and Barone A. (2014) Mediators of inflammation, 139873.
3. Wu Z., Sun S., Wang F. and Guo D. (2011) British Biotechnology Journal, 1(3), 53-60.
4. Ruma D., Dhaliwal M., Kaur A. and Gosal S. (2009) Indian J Biotechnol, 8(4), 363-369.
5. Rajesh N., Siva K., John E. and Osman B. (2016) Int J Recent Scientific Res, 7(1), 8583-8591.
6. Kim J., Sun S. and German T. (1994) Plant disease, 78,615-621.
7. Rick, C. Tomato, Lycopersicon esculentum (Solanaceae). Evolution of crop plants. Edited by: Simmonds NW. (1976), London, Longman Group.
8. Lisar S.Y., Motafakkerazad R., Hossain. and M.M. Rahman I.M. (2012) Water stress: InTech., 10,39363
9. Mccormick S., Niedermeyer J., Fry J., Barnason A., Horsch R. and Fraley R. (1986) Plant Cell Reports, 5(2), 81-84.
10. Frary A. and Earle E.D. (1996) Plant Cell Reports, 16(3-4), 235-240.
11. Hamza S. and Chupeau Y. (1993) Journal of Experimental Botany, 44(12), 1837-1845.
12. Ling H.Q., Kriseleit D. and Ganal M. (1998) Plant Cell Reports, 17(11), 843-847.
13. Park S.H., Morris J.L., Park J.E., Hirschi K.D. and Smith R.H. (2003) Journal of plant physiology, 160(10), 1253-1257.
14. Sharma M.K., Solanke A.U., Jani D., Singh Y. and Sharma A.K. (2009) Journal of Biosciences, 34(3), 423.
15. Sun S., Kang X.P., Xing X.J., Xu X.Y., Cheng J., Zheng S.W. and Xing, G.M. (2015) Biotechnology & Biotechnological Equipment, 29(5), 861-868.
16. Van Roekel J.S., Damm B., Melchers L.S.and Hoekema A. (1993) Plant Cell Reports, 12(11), 644-647.
17. Vidya C.S., Manoharan M., Kumar C.R., Savtthri H. and Sita G.L. (2000) Journal of Plant Physiology, 156(1),106-110.
18. Rahman H., Jagadeeshselvam N., Valarmathi R., Sachin B., Sasikala R., Senthil N., Sudhakar D., Robin S. and Muthurajan R. (2014) Plant Molecular Biology, 85(4-5), 485-503.
19. Rahman H., Ramanathan V., Nallathambi J., Duraialagaraja S. and Muthurajan R. (2016) BMC Biotechnology, 16(1), 35.
20. Murashige T. and Skoog F. (1962) Physiology Planta, 15, 473- 497.
21. Doyle J. and Doyle J. Phytochem Bull, 19(11), 11-15. [7] J.J. (2007) Current Opinion in Plant Biology, 10(3), 283-289.
23. Nguyen H.T., Babu R.C. and Blum A. (1997) Crop Science, 37(5), 1426-1434.
24. Ambawat S., Sharma P., Yadav N.R. and Yadav R.C. (2013) Physiology and Molecular Biology of Plants, 19(3), 307-321.
25. Mittler R. and Blumwald E. (2010) Annual Review of Plant Biology, 61, 443-462.
26. Nakashima K., Takasaki H., Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. (2012) Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 97-103.
27. Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q. and Xiong L. (2006) Proceedings of the National Academy of Sciences, 103(35), 12987-12992.
28. Tran L.S.P., Nishiyama R., Yamaguchi-Shinozaki K. and Shinozaki K. (2012) GM crops, 1(1), 32-39.
29. Thirumalaikumar V.P., Devkar V., Mehterov N., Ali S., Ozgur R., Turkan I., Mueller‐Roeber B. and Balazadeh S. (2018) Plant Biotechnology Journal, 16(2), 354-366.
30. Dai S., Zheng P., Marmey P., Zhang S., Tian W., Chen S., Beachy. and R.N. Fauquet C. (2001) Molecular Breeding, 7(1), 25-33.
31. Ma J., Liu T. and Qiu D. (2015) Plant Omics, 8(6), 529.
32. Wang B.Q., Zhang Q.F., Liu J.H. and Li G.H. (2011) Biochemical and Biophysical Research Communications, 413(1), 10-16.
33. Shrawat, A.K. and Lörz, H. (2006) Plant Biotechnology Journal, 4(6), 575-603.
34. Classic Murashige T. and Skoog F. (1962) Physiol. Plant, 15, 473-497.