IMPACT OF SALINITY ON ANTIOXIDATIVE ENZYMES AND METABOLITES RESPONSE IN TWO RICE CULTIVARS

R. SHASHIKUMARA1, KIRAN KAMALAKAR MIRAJKAR2*, SUPREETH S. KULKARNI3, ARVIND KUMAR4, RENUKA SUDARSHAN PATIL5
1Department of Biochemistry, College of Agriculture, University of Agricultural Sciences, Dharwad, 580 005, Karnataka, India
2Department of Biochemistry, College of Agriculture, University of Agricultural Sciences, Dharwad, 580 005, Karnataka, India
3Department of Biochemistry, College of Agriculture, University of Agricultural Sciences, Dharwad, 580 005, Karnataka, India
4Department of Agronomy, College of Agriculture, Dharwad, 580 005, Karnataka, India
5Department of Biochemistry, College of Agriculture, University of Agricultural Sciences, Dharwad, 580 005, Karnataka, India
* Corresponding Author : mirajkarkk@uasd.in

Received : 13-09-2017     Accepted : 18-09-2017     Published : 24-09-2017
Volume : 9     Issue : 44       Pages : 4725 - 4732
Int J Agr Sci 9.44 (2017):4725-4732

Keywords : Salinity, anti-oxidative enzymes, catalase, superoxide dismutase, resistance
Academic Editor : Dr Renu Agrawal
Conflict of Interest : None declared
Acknowledgements/Funding : We thank to Directorate of Research, University of Agricultural Sciences, Dharwad, India
Author Contribution : Kiran Kamalakar Mirajkar: Principle Investigator, who has conceptualized, designed the research programme and arranged for all the infrastructural facilities required for the research programme

Cite - MLA : SHASHIKUMARA, R., et al "IMPACT OF SALINITY ON ANTIOXIDATIVE ENZYMES AND METABOLITES RESPONSE IN TWO RICE CULTIVARS." International Journal of Agriculture Sciences 9.44 (2017):4725-4732.

Cite - APA : SHASHIKUMARA, R., MIRAJKAR, KIRAN KAMALAKAR, KULKARNI, SUPREETH S., KUMAR, ARVIND, PATIL, RENUKA SUDARSHAN (2017). IMPACT OF SALINITY ON ANTIOXIDATIVE ENZYMES AND METABOLITES RESPONSE IN TWO RICE CULTIVARS. International Journal of Agriculture Sciences, 9 (44), 4725-4732.

Cite - Chicago : SHASHIKUMARA, R., KIRAN KAMALAKAR MIRAJKAR, SUPREETH S. KULKARNI, ARVIND KUMAR, and RENUKA SUDARSHAN PATIL. "IMPACT OF SALINITY ON ANTIOXIDATIVE ENZYMES AND METABOLITES RESPONSE IN TWO RICE CULTIVARS." International Journal of Agriculture Sciences 9, no. 44 (2017):4725-4732.

Copyright : © 2017, R. SHASHIKUMARA, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Soil salinity, due to varying salt levels that occur in large terrestrial areas of the world severely affect crop yield. The present investigation was taken up to describe the potential biochemical and enzymatic responses in the leaves and roots of two rice cultivars CSR-23 (tolerant) and BPT- 5204 (sensitive) to different salt concentrations. Here, we observed significant changes in the biochemical and enzymatic responses between control and treatments as well as between the genotypes. The salt sensitive variety i.e. BPT 5204 exhibited high reducing sugar and total phenol contents, compared to salt tolerant variety CSR 23. Catalase activity was significantly higher in leaves (46 %) and roots (5.5 %) of CSR 23 compared to BPT 5204. CSR 23 also showed an elevated Superoxide dismutase (SOD) activity in leaves (45.5 %) and roots (12.4 %) compared to BPT 5204. Similarly, Glutathione Reductase increased in the leaves (85 %) and roots (91.5 %) of CSR 23 as compared to BPT 5204. Highest nitrate reductase activity was observed in leaves of CSR 23(48 %) compared to BPT 5204, whereas there was no significant change in case of roots. BPT 5204 showed significantly higher NiR activity in leaves (18.3 %) and roots (17.5 %) as compared to CSR23. BPT 5204 showed significantly higher Total chlorophyll content in leaves and decreased in CSR 23 (25 %). The salt-tolerant cultivar CSR23 resisted salinity stress due to its ability to surmount oxidative stress via up-regulation of anti-oxidative enzymes and nitrogen assimilating enzymatic activities.

References

1. Kohli A., Sreenivasulu N. and Kumar P.P. (2013) Plant Cell Rep., 32, 945–957.
2. Munns R., Tester M. (2008) Annu Rev Plant Biol., 59, 651–681.
3. Mahajan S. and Tuteja N. (2005) Arch Biochem Biophys, 444,139–158.
4. Hasanuzzaman M., Hossain M.A. and Fujita M. (2011a) Plant Biotechnol Rep, 5, 353–365.
5. Hasanuzzaman M., Hossain M.A. and Fujita M. (2011b) Biol Trace Elem Res., 143,1704–1721.
6. Lamb C., Dixon R.A. (1997) Annu Rev Plant Physiol Plant Mol. Bol., 48, 251–275.
7. Mittler R. (2002) Trends Plant Sci., 7,405–410.
8. Yokotani N., Sato Y., Tanabe S., Chujo T., Shimizu T., Okada K., et al. (2013) J. Exp. Bot. 64, 5085–5097.
9. Bose J., Rodrigo-Moreno A., Shabala S. (2014) J Exp Bot 65:1241–1257
10. Munné-Bosch S. (2005) J Plant Physiol., 162, 743–748.
11. Munné-Bosch S. (2007) Vitam Horm., 76, 375–392.
12. Ahmad P., Jaleel C.A., Salem M.A., Nabi G. and Sharma S. (2010) Crit Rev Biotechnol, 30,161–175.
13. Scandalios J.G. (1993) Plant Physiol., 101, 7–12.
14. Foyer C.H. and Noctor G. (2003) Physiol Plant, 119, 355–364.
15. Bradford M.M. (1976) Analytical. Biochemistry, 72, 248-254.
16. Beers R.F. and Sizer I.W. (1952) Journal of Biological Chemistry, l95,133-140.
17. Beauchamp C. and Fridovich I. (1971) Analytical. Biochemistry, 44, 276-287.
18. Mavis R.D. and Stellwagen E. (1968) Journal of Biological Chemistry, 243, 809 -814.
19. Hageman R.H. and Reed A.J. (1980) Methods EnzymoL, 69, 270-280.
20. Wray J.L. and Fido J. (1990) Nitrate reductase and nitrite reductase. In: Methods in Plant Biochemistry, Vol. 3, Enzymes of Primary Metabolism (P.J. Lea, ed.) Academic Press, London. pp. 241–256.
21. Sadasivam S. and Manikam A. (1992) Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited, New Delhi, pp. 150-151.
22. Singleton V.L. and Rossi J.A. Jr. (1965) American Journal of Enology and Viticulture, 16, 144-158.
23. Hiscox J.D. and Tsraelstam G.F. (1979) Canadian Journal of Botany, 57, 1332-1334
24. Cruz C.M.H. (2008) Plant Signal. Behav., 3, 156-165.
25. Miller G., Suzuki N., Ciftci Y.S. and Mittler R. (2010) Plant Cell Environ., 33, 453-467.
26. Yarden O., Veluchamy S., Dickman M.B. and Kabbage M. (2014) Physiological and Molecular Plant Pathology, 85, 34-41.
27. Elstner E.F. (1991) Mechanisms of oxygen activation in different compartments of plant cells. In: Active Oxygen/ Oxidative Stress and Plant Pell Metobolism. Ed. Pell, E. J., Steffen, K. L. and Rockville, M. D., American Society of Plant Physiologists, pp. 13-25.
28. Maribel L.D. and Tobita S. (1998) Plant Sci., 135, 1–9.
29. Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y. and Yoshimura K. (2002) J. Exptl. Bot., 53, 1305-1319.
30. Neto A.D.A., Prisco J.T., Joaquim E.F., Abreu C.E.B. and Filho E.G. (2006) Environ. Exptl. Bot., 56, 87–94.
31. Smith I.K., Vierheller T.L. and Thorne C.A. (1989) Physiol. Plant, 77, 449-456.
32. Flores P, Botella MA, Martinez V and Cerda A. (2002) J. Plant Physiol., 156, 552-557.
33. Lea, P. J. (1993) Nitrogen Metabolism. In: Lea PJ, Leegood RC (eds) Plant biochemistry and molecular biology. Wiley, New York, pp 155–180.
34. Gouia H., Ghorbal M.H., Touraine B. (1994) Plant Physiol., 105, 1407- 1418.
35. Yamasaki H., Sakihama Y. and Takahashi S. (1999) Plant Sci., 4, 128-129.
36. Rockel P., Strube F., Rockel A., Wildt J. and Kaiser W.M. (2002) J. Exptl. Bot., 53, 103-l10.
37. Bethke P.C., Badger M.R. and Jones R.L. (2004) Plant Cell., 16, 332-341.
38. Henh M.T.M., Ni X., Macedo T., Markwell J..P, Baxendale F.P., Quisenberry S.S. and Tolmay V. (2003) J. Economic Entomol., 96, 475-481.
39. Mithofer A. and Boland W. (2007) release. Phytochemistry, 68, 2946- 2959.
40. Montano M., Sukegawa K., Kato Z., Carrozzo R., Natale P.D., Christensen E., Orii K.O., Orii T., Kondo N. and Tomatsu S. (2007) J. Inherit. Metab. Dis., 30, 758-67.
41. Wahab M.A. (2006) Res J. Agric. Biol. Sci., 2, 571-577.
42. Lewitt J. (1980) Responses of Plants to Environmental Stresses, Vol. II, 2nd Ed. Academic Press, New York, p. 607.
43. Jaleel C.A., Manivannan P. and Sankar B. (2007) Plant Physiol., 60, 7-11.