GENETIC ANALYSIS FOR GRAIN WEIGHT AND GRAIN NUMBER IN WHEAT (Triticum aestivum L. Em. Thell)

PAWAN KUMAR1*, RAMESH KUMAR YADAVA2, SANDEEP KUMAR3
1Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, 125 004, Haryana
2Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, 125 004, Haryana
3Department of Genetics & Plant Breeding, CCS Haryana Agricultural University, Hisar, 125 004, Haryana
* Corresponding Author : pk5gene@yahoo.com

Received : 24-11-2016     Accepted : 13-04-2017     Published : 30-04-2017
Volume : 9     Issue : 20       Pages : 4214 - 4219
Int J Agr Sci 9.20 (2017):4214-4219

Keywords : Grain weight, Transgressive segregants, Gene effects, Grain number, Quantitative trait Loci
Conflict of Interest : None declared
Acknowledgements/Funding : The authors gratefully acknowledged CCS Haryana Agricultural University, Hisar (India) for providing all facilities and assistance. The Author Mr. Pawan Kumar (UGC-SRF) fully acknowledges the financial support provided by UGC, New Delhi, India for present investigation
Author Contribution : All author equally contributed

Cite - MLA : KUMAR, PAWAN, et al "GENETIC ANALYSIS FOR GRAIN WEIGHT AND GRAIN NUMBER IN WHEAT (Triticum aestivum L. Em. Thell)." International Journal of Agriculture Sciences 9.20 (2017):4214-4219.

Cite - APA : KUMAR, PAWAN, YADAVA, RAMESH KUMAR, KUMAR, SANDEEP (2017). GENETIC ANALYSIS FOR GRAIN WEIGHT AND GRAIN NUMBER IN WHEAT (Triticum aestivum L. Em. Thell). International Journal of Agriculture Sciences, 9 (20), 4214-4219.

Cite - Chicago : KUMAR, PAWAN, RAMESH KUMAR YADAVA, and SANDEEP KUMAR. "GENETIC ANALYSIS FOR GRAIN WEIGHT AND GRAIN NUMBER IN WHEAT (Triticum aestivum L. Em. Thell)." International Journal of Agriculture Sciences 9, no. 20 (2017):4214-4219.

Copyright : © 2017, PAWAN KUMAR, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

There are three cordial components in wheat which determines the grain yield: tillers per plant, number of grains and grain weight per spike. All the three components are mutually exclusive and it has been witnessed that the higher number of grain normally correlates with lower grain weight. This negative linkage is serious unhampress selection gain. It is to be emphasized these both traits are polygenic and hence finding their recombinants of positive type’s i.e. higher number of grains/spike along with higher grain weight is feasible. This would be achieved if there is adequate variability in segregating population and selection pressure is exerted in right direction with appropriate selection intensity. Keeping this hypothesis in mind we investigated the variability and gene effects in five wheat crosses involving discrete and contrasting parents over two crop seasons for these two traits. The F2 population revealed the presence of adequate genetic variability over and above the parental range with various combinations i.e. higher number of grain-lower grain weight, medium number of grains-medium grain weight and higher number of grains with higher grain weight. However, there frequency varied over the both cropping seasons. The higher grain weight is invariably attributed to higher amount of deposition of carbohydrates (starch). Thus, the transgressive segregants for grain number and grain weight could be recovered in all five cross viz. Rm-Ts17 x PBW502; HS27 x PBW502; HS67 x PBW502; HJP81 x PBW502; HG2 x HD2009M. Pedigree selection in such crosses is therefore expected to yield the dividends. The SSR marker analysis also indicated that some quantitative trait Loci QTLs) could be associated with either higher number of grains or higher grain weight or both the traits. Marker assisted selection, therefore should be feasible, our study suggest that both genotyping and phenotyping should be resorted to identify the desired transgressive segregants for high grain weight and higher grain number, so that wheat yield can be enhanced.

References

1. Muthamilarasan M., Parida S.K. and Prasad M. (2014) Proc Indian Natn Sci Acad., 80(2), 325-331 DOI: 10.16943/ptinsa/2014/v80i2/55110
2. Sharma I., Tyagi B. S., Singh G., Venkatesh K. and Gupta O. P. (2015) Indian Journal of Agricultural Sciences, 85(1), 3–13.
3. Fischer R.A. (2011) Crop & Pasture Science, 62, 95–114.
4. Golan G., Oksenberg A. and Peleg Z. (2015) Journal of Experimental Botany, 66(19), 5703–5711, doi:10.1093/jxb/erv249
5. Kumar P., Yadava R. K., Gollen B. and Sheoran O.P. (2013) Indian Journal of Agricultural Sciences, 83 (7), 748–757.
6. Gegas V.C., Nazari A., Griffiths S., Simmonds J., Fish L., Orford S., et al. (2010) Plant Cell, 22, 1046–1056.doi:10.1105/tpc.110.074153
7. Fethi B. and Mohamed E.G. (2010) Plant Breeding and Crop Sci., 2(2), 024-029.
8. Quan Xie, Sean Mayes and Debbie L. Sparkes. (2015) Journal of Experimental Botany, doi:10.1093/jxb/erv378.
9. Singh G., Nanda G.S and Sohu V.S. (1998) ndian Journal of Genetics & Plant Breeding, 58, 83-89.
10. Wang J., Liu W., Wang H., Li L., Wu J., Yang X., Li X. and Gao A. (2011) Euphytica, 177, 277-292.
11. Sun X.Y., Wu K., Zhao Y., Kong F.M., Han G.Z., Jiang H.M., Huang X.J., Li R.J., Wang H.G. and Li S.S. (2009) Euphytica, 165(3), 615-624.
12. Vasilis C. Gegas, Aida Nazari, Simon Griffiths, James Simmonds, Lesley Fish, Simon Orford, Liz Sayers, John H. Doonan and John W. Snapea. (2010) The Plant Cell, 22, 1046–1056,
13. Zanke C.D., Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW and Röder M.S. (2015) Front. Plant Sci., 6, 644. doi: 10.3389/fpls.2015.00644
14. Cavalli L.L. (1952) An analysis of linkage of quantitative inheritance. In: Quantitative inheritance (E.C.R. Reeve and C.H. Weddington eds.), HMSC, London. pp: 135-144.
15. Hayman B.I. (1958) Heredity, 12, 371-390.
16. Hayman B.I. and Mather, K. (1955) Biometrics, 11, 69-82.
17. Mather K. (1967) Heredity, 22, 97-103.
18. Simmonds J., Scott, P., Leverington-Waite M., Turner A.S., Brinton J., Korzun V., et al. (2014) BMC Plant Biol., 14,191.doi:10.1186/s12870-014-0191-9
19. Novoselovic D., Baric M., Drezner G., Gunjaca J. and Lalic A. (2004) Genetics and Molecular Biology, 27(1), 692-698.
20. Pawar K.K., Payasi D.K. and Singh A. K. (2015) The Bioscan International quaternaly Journal of Life Sciences, 10(2), 841-845.
21. Sheikh S., Behl R. K., Dhanda S. S. and Kumar A. (2009) The South Pacific Journal of Natural Science, 27, 38-44
22. Shekhawat U.S., Prakash V. and Bhardwaj R.P. (2006) Indian J. Genet., 66(1), 16-18.
23. Singh G., Nanda G.S. and Sohu V.S. (1998) Indian Journal of Genetics & Plant Breeding, 58, 83-89.
24. Arora A., Kundu S., Dilbaghi N., Sharma I. and Tiwari R. (2014) AJCS, 8(9), 1281-1289.
25. Schuster I., Vieira E.S.N., Silva G.J., Franco F.A. and Marchioro V.S. (2009) Genet. and Mol. Biol., 32(3), 557 563.
26. Sehgal D., Vikram P., Sansaloni C.P., Ortiz C., Pierre C.S. and Payne T. (2015) PLoS ONE, 10(7), e0132112. doi:10.1371/journal.pone.0132112.
27. Zhang K.P., Tian J.C., Zhao L. and Wang S.S. (2008) J. Genet. Genomics, 35, 119–127.