APPLICATION OF MOLECULAR METHODS AS A BIOMARKER IN BIOREMEDIATION STUDIES

GUERMOUCHE M.A.1*, BENSALAH F.2, GRAY N.3
1Faculté des Sciences de la Nature et de la Vie. Département de Biotechnologie, Laboratoire de Génétique Microbienne (LGM). Université Es-Sénia- Oran 31000, Algérie.
2Faculté des Sciences de la Nature et de la Vie. Département de Biologie, Laboratoire de Génétique Microbienne (LGM), Université Es-Sénia- Oran 31000, Algérie.
3School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, NE17RU, UK.
* Corresponding Author : amel_guermouche@yahoo.fr

Received : 26-10-2013     Accepted : 21-11-2013     Published : 30-12-2013
Volume : 5     Issue : 1       Pages : 147 - 154
Int J Biotechnol Appl 5.1 (2013):147-154
DOI : http://dx.doi.org/10.9735/0975-2943.5.1.147-154

Keywords : Bioremediation, petroleum-hydrocarbon, microbial consortium, 16S rRNA, Pseudomonas, TLC/FID, alkB genes
Conflict of Interest : None declared
Acknowledgements/Funding : This work was supported by the School of Civil Engineering and Geosciences, University of Newcastle, UK

Cite - MLA : GUERMOUCHE M.A., et al "APPLICATION OF MOLECULAR METHODS AS A BIOMARKER IN BIOREMEDIATION STUDIES." International Journal of Biotechnology Applications 5.1 (2013):147-154. http://dx.doi.org/10.9735/0975-2943.5.1.147-154

Cite - APA : GUERMOUCHE M.A., BENSALAH F., GRAY N. (2013). APPLICATION OF MOLECULAR METHODS AS A BIOMARKER IN BIOREMEDIATION STUDIES. International Journal of Biotechnology Applications, 5 (1), 147-154. http://dx.doi.org/10.9735/0975-2943.5.1.147-154

Cite - Chicago : GUERMOUCHE M.A., BENSALAH F., and GRAY N. "APPLICATION OF MOLECULAR METHODS AS A BIOMARKER IN BIOREMEDIATION STUDIES." International Journal of Biotechnology Applications 5, no. 1 (2013):147-154. http://dx.doi.org/10.9735/0975-2943.5.1.147-154

Copyright : © 2013, GUERMOUCHE M.A., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

In contaminated soils, the efficiency of natural attenuation or engineered bioremediation largely depends on the biodegradation capacities of the total microflorae. In the present study, the biodegradation capacities of various bacteria towards petroleum-hydrocarbons were determined under laboratory conditions. The purpose of the study was to isolate and characterize petroleum-degrading bacteria from contaminated soil obtained from a refinery in Arzew, Algeria. A collection of 15 bacterial isolates were obtained by enrichment cultivation from oil-contaminated soil and an indigenous microbial consortium was developed by assembling four species of bacteria which could degrade different fractions of the petroleum hydrocarbons. 16S rRNA gene analysis was used to identify members of the consortium and oil biodegradability was analyzed by Thin Layer Chromatography (TLC) with Flame Ionization Detection (FID) that performs quantitative compositional analysis of oil samples. The Iatroscan TLC/FID system measured the relative percentages of the four major fractions of petroleum i.e. saturates aromatics, resins and asphaltenes. Results indicated that the constructed consortium which comprised the genera Pseudomona, Shewanella, Enterobacter and Serratia used the hydrocarbons as sole sources of carbon where biodegradation was defined by an initial rapid decrease in the saturate and aromatic fractions from 56.44% and 34.72% to 51.77% and 27.77% respectively, coinciding with an increase in the asphaltene fraction. The resin content remained relatively constant throughout the project. Alkane hydroxylase genes (alkB) were positively amplified in the Pseudomonas isolate by the polymerase chain reaction (PCR) method using degenerate primers. This functional gene was used as a marker to assess the catabolic potential of the bacteria for alkane pollutant biodegradation. The selected bacterial consortium looks promising for its application in bioremediation technologies.

References

[2] Viñas V., Grifoll M., Sabate J., Solanas A.M. (2002) Journal of Industrial Microbiology and Biotechnology, 28, 252-260  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Viñas V., Grifoll M., Sabate J., Solanas A.M. (2002) Journal of Industrial Microbiology and Biotechnology, 28, 252-260  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Yerushalmi R., Baldridge K.K., Scherz A. (2003) Journal of American Chemical Society, 125(42), 12706-12707.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] American Chemical Society, 125(42), 12706-12707.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Brooijmans R.J.W., Pastink M.I., Siezen R.J. (2009) Microbial Biotechnology, 2(6), 587-594.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Brooijmans R.J.W., Pastink M.I., Siezen R.J. (2009) Microbial Biotechnology, 2(6), 587-594.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Brooijmans R.J.W., Pastink M.I., Siezen R.J. (2009) Microbial Biotechnology, 2(6), 587-594.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Zhang Z., Gai L., Hou Z., Yang C., Ma C., Wangd Z., Sun B., He X., Tang H., Ping Xu P. (2010) Bioresource Technology, 101, 8452-8456.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Zhang Z., Gai L., Hou Z., Yang C., Ma C., Wangd Z., Sun B., He X., Tang H., Ping Xu P. (2010) Bioresource Technology, 101, 8452-8456.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Maki H., Sasaki T., Harayama S. (2001) Chemosphere, 44, 1145-1151  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Maki H., Sasaki T., Harayama S. (2001) Chemosphere, 44, 1145-1151  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Brito E.M.S., Guyonraud R., Goni-Urriza M., Ranchou-Peyruse A., Verbaere A., Crapez M.A.C., Wasserman J.C.A., Duran R. (2006) Brazilian Research in Microbiology, 157, 752-762.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Brito E.M.S., Guyonraud R., Goni-Urriza M., Ranchou-Peyruse A., Verbaere A., Crapez M.A.C., Wasserman J.C.A., Duran R. (2006) Brazilian Research in Microbiology, 157, 752-762.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Brito E.M.S., Guyonraud R., Goni-Urriza M., Ranchou-Peyruse A., Verbaere A., Crapez M.A.C., Wasserman J.C.A., Duran R. (2006) Brazilian Research in Microbiology, 157, 752-762.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Sato T., Hu J.P., Yamaura M., Washio J., Matsuyama J., Takahashi N. (2003) Oral Microbiology and Immunology, 18, 323-326.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Sato T., Hu J.P., Yamaura M., Washio J., Matsuyama J., Takahashi N. (2003) Oral Microbiology and Immunology, 18, 323-326.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] ]Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. (2007) Applied and Environmental Microbiology, 73, 5261-5267  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] 8]Wang W., Wang L., Shao Z. (2010) Microbial Ecology, 60, 429- 439  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Goto M., Kato M., Asaumi M., Shirai K., Venkateswaren K. (1994) Journal of Marine Biotechnology, 2, 45-50  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Maki H., Ishihara M., Harayama S. (1997) In situ and On-site Bioremediation, 4, 371-375.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] ]Mueller J., Cerniglia C., Pritchard P. (1997) Bioremediation: principles and practices, Cambridge University Press, New York, 125-194.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus