STRUCTURAL AND ELECTRICAL PROPERTIES OF SM3+ DOPED CO- ZN FERRITE

Kadam G.B.1, Shelke S.B.2, Jadhav K.M.3
1Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad
2Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad
3Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 15 - 25
J Electron Electr Eng 1.1 (2010):15-25

Cite - MLA : Kadam G.B., et al "STRUCTURAL AND ELECTRICAL PROPERTIES OF SM3+ DOPED CO- ZN FERRITE." Journal of Electronic and Electrical Engineering 1.1 (2010):15-25.

Cite - APA : Kadam G.B., Shelke S.B., Jadhav K.M. (2010). STRUCTURAL AND ELECTRICAL PROPERTIES OF SM3+ DOPED CO- ZN FERRITE. Journal of Electronic and Electrical Engineering, 1 (1), 15-25.

Cite - Chicago : Kadam G.B., Shelke S.B., and Jadhav K.M. "STRUCTURAL AND ELECTRICAL PROPERTIES OF SM3+ DOPED CO- ZN FERRITE." Journal of Electronic and Electrical Engineering 1, no. 1 (2010):15-25.

Copyright : © 2010, Kadam G.B., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Polycrystalline ferrite samples having the general formula Co1-x Znx Fe2-ySmyO4 (where x= 0.0,0.1,0.2,0.3,0.4,0.5 and y=0.05) were prepared by conventional standard ceramic technique. The single-phase cubic spinel structures of the samples were confirmed by x-ray diffraction patterns. It seems that substituted Sm3+ decreases the lattice constant by small extent and increases x-ray density. Lattice constant is found to decrease first up to x=0.1, beyond which it increases with Zn concentration x. The x-ray density is found to increase first upto x=0.1 and then after it decreases slowly. The hoping lengths LA, LB and bond lengths dAx, dBx are found varying as per changes in lattice constant. The cation distribution shows that non-magnetic Zn2+ occupies A-site. Ni 2+ and Sm3+ are found to be diverting towards B-site. Lattice constant calculated theoretically from cation distribution is found higher than experimentally observed lattice constant. The substitution of Sm3+ increases the electrical resistivity of ferrites. The resistivity decreases with increasing temperature. The graphs between (logρ) and (1000/T) show two regions corresponding to paramagnetic and ferrimagnetic behaviour through straight lines. Curie temperature obtained by d. c. resistivity are in good compromise with those obtained by a. c. susceptibility. Activation energies are found greater in paramagnetic region than those in ferrimagnetic region.

References

[1] R. M. Gil lot, G. Benloucif, A. Rousset Phys. Stat. Sol. A 65 (1981) 205.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] O. S. Josyulu, J. Sobhanadri Phys. Stat. Sol. (a) 59 (1980) 323.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] S. A. Mazen, A. E. Abd El- Rahim J. Matt. Sci. 23 (1988) 2917.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] M. S. Ramana J. Matt. Sci . Lett. 3 (1984) 1049.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] S. Phanjoubam, D. Kothari, J. S. Baijal Phys. Sol (a) 111 (1989) 131  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Abedellatif Indian J. phys. 77 A (4) (2003) 359.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] H. N. Ok and B. J. Evens Phys. Rev. B. 14 (1976) 2956.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] D. C. Dobson, J. W. Linnet and M. M. Rehman J. Phys Chem Soli . 31 (1970) 2727.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] H. Tang, Y. W. Du, Z. Q. Qiu and J. C. Walker J. Appl. Phys. 63 (1988) 4105.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] H. M. Vanoort, J. W. D Marteens and W. L. Peeters Matt. Res. Bull 20 (1985) 41.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] V. R. Murthy and J. Sobhanadri Phys. Status sol. (a) 36 (1976) k 133  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] M. A. Ahmed and M. H. Wasfy Ind. J. of Pure and App. Phys. Vol 41 (2003) 731 J. M. M. M. 219 (2000)9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] J.L. Bhosale, S.N. Kulkarni, R.B. sasmile and B. K. Chougule Bull Matt. Sci 19 No 5 (1996) 767.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] C. B. Kolekar, P. N. Kamble and A. S. Vaingankar J.M.M.M.138 (1994) 211.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] K. Suzuki, T. Namikawa, Y. Yamazak Jpn. J. Appl. Phys 27 (1988) 361.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] R. S. Tibble, D. J. Craik “Magnetic Materials”  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] S. A. Mazen, M. H. Abdellah, B. A. Sabrah, H. A.M. Hashem, Phys stat. Sol. A 134 (1992) 263.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus