ROLE OF MHC RESTRICTION IN ALLOGENEIC IMMUNE RESPONSES TO CANCER

Gomase V.S.1*, Parundekar A.N.2
1School of Technology, S.R.T.M. University, Sub-Centre, Latur, 413531
2Padmashree Dr. D. Y. Patil University, CBD Belapur, Navi Mumbai, 400614, India
* Corresponding Author : gomase.viren@gmail.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 12 - 24
Int J Genom Proteomics 1.1 (2010):12-24
DOI : http://dx.doi.org/10.9735/0976-4887.1.1.12-24

Conflict of Interest : None declared

Cite - MLA : Gomase V.S. and Parundekar A.N. "ROLE OF MHC RESTRICTION IN ALLOGENEIC IMMUNE RESPONSES TO CANCER." International Journal of Genomics and Proteomics 1.1 (2010):12-24. http://dx.doi.org/10.9735/0976-4887.1.1.12-24

Cite - APA : Gomase V.S., Parundekar A.N. (2010). ROLE OF MHC RESTRICTION IN ALLOGENEIC IMMUNE RESPONSES TO CANCER. International Journal of Genomics and Proteomics, 1 (1), 12-24. http://dx.doi.org/10.9735/0976-4887.1.1.12-24

Cite - Chicago : Gomase V.S. and Parundekar A.N. "ROLE OF MHC RESTRICTION IN ALLOGENEIC IMMUNE RESPONSES TO CANCER." International Journal of Genomics and Proteomics 1, no. 1 (2010):12-24. http://dx.doi.org/10.9735/0976-4887.1.1.12-24

Copyright : © 2010, Gomase V.S. and Parundekar A.N., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

References

[1] Lang K, Entschladen F, Weidt C, Zaenker KS.[ 2006] Tumor immune escape mechanisms: impact of the neuroendocrine system. Cancer Immunol Immunother.55[7]:749-60  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Botti C, Seregni E, Ferrari L, Martinetti A, Bombardieri E.[1998] Immunosuppressive factors: role in cancer development and progression. Int J Biol Markers. 13[2]:51-69  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] M.J. Garlepp, C.C. Leong[1995,] Biological and immunological aspects of malignant mesothelioma Eur Respir J, 8, 643–650  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Chakraverty R, Sykes M.[ 2007] The role of antigen-presenting cells in triggering graftversus- host disease and graft-versus-leukemia. Blood110[1]:9-17  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Detours V, Perelson AS.[2000] The paradox of alloreactivity and self MHC restriction: quantitative analysis and statistics. Proc Natl Acad Sci U S A. 97[15]:8479-83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Nesic D, Maric M, Santori FR, Vukmanovic S[2002]. Factors influencing the patterns of T lymphocyte allorecognition. Transplantation.73 [5]:797-803.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Hornell TM, Myers N, Hansen TH, Connolly JM.[2003] Homology between an alloantigen and a self MHC allele calibrates the avidity of the alloreactive T cell repertoire independent of TCR affinity. J Immunol. 170[9]:4506-14.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Whitelegg A, Barber LD.[2004] The structural basis of T-cell allorecognition. Tissue Antigens.63[2]:101-8  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Slavin S.[2002] Maternal-fetal relationship, natural chimerism and bilateral transplantation tolerance as the basis for non-myeloablative stem cell transplantation. Int J Hematol. 76 Suppl 1:172-5  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Erikci AA, Karagoz B, Ozyurt M, Ozturk A, Kilic S, Bilgi O.[2009] HLA-G expression in B chronic lymphocytic leukemia: a new prognostic marker? Hematology,14[2]:101-5  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Feng X, Hui KM, Younes HM, Brickner AG.[2008] Targeting minor histocompatibility antigens in graft versus tumor or graft versus leukemia responses. Trends Immunol. [12]:624-32  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Parkman R.[1989] Graft-versus-host disease: an alternative hypothesis. Immunol Today. 10[11]:362-4.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Ferrara JL, Cooke KR, Teshima T. [2003] The pathophysiology of acute graft-versus-host disease. nt J Hematol.78[3]:181-7.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Tawara I, Maeda Y, Sun Y, Lowler KP, Liu C, Toubai T, McKenzie AN, Reddy P. [2008] Combined Th2 cytokine deficiency in donor T cells aggravates experimental acute graftvs- host disease. Exp Hematol. 36[8]:988-96  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Blazar BR, Murphy WJ. [2005] Bone marrow transplantation and approaches to avoid graftversus- host disease [GVHD]. Philos Trans R Soc Lond B Biol Sci. 360[1461]:1747-67  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Reddy P. [2003] Pathophysiology of acute graft-versus-host disease. Hematol Oncol. 21[4]:149-61.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Nogueira-Martins MF, Mariano M.[2009] B-1 cell participation in T-cell-mediated alloimmune response. Immunobiology. [Epub ahead of print]  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Ikehara S.[2000] Pluripotent hemopoietic stem cells in mice and humans. Proc Soc Exp Biol Med. 223[2]:149-55.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Ikehara S.[2001] Successful allogeneic bone marrow transplantation. Crucial roles of stromal cells in prevention of graft rejection. Acta Haematol. 105[3]:172-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Nasef A, Zhang YZ, Mazurier C, Bouchet S, Bensidhoum M, Francois S, Gorin NC, Lopez M, Thierry D, Fouillard L, Chapel A.[2009] Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol31[1]:9-19  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Murphy B, Yu J, Jiao Q, Lin M, Chitnis T, Sayegh MH.[2003] A novel mechanism for the immunomodulatory functions of class II MHC-derived peptides. J Am Soc Nephrol. 14[4]:1053-65.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Petersen SL.[2007] Alloreactivity as therapeutic principle in the treatment of hematologic malignancies Studies of clinical and immunologic aspects of allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. Dan Med Bull. 54[2]:112-39  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Capitini CM, Herby S, Milliron M, Anver MR, Mackall CL, Fry TJ.[2009] Bone marrow deficient in IFN-{gamma} signaling selectively reverses GVHD-associated immunosuppression and enhances a tumor-specific GVT effect. Blood. 113[20]:5002-9. Epub 2009 Mar 3.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Overes IM, Fredrix H, Kester MG, Falkenburg JH, van der Voort R, de Witte TM, Dolstra H.[2009] Efficient activation of LRH-1-specific CD8+ T-cell responses from transplanted leukemia patients by stimulation with P2X5 mRNA-electroporated dendritic cells. J Immunother. ;32[6]:539-51  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Rezvani AR, Storb RF. [2008] Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun; 30[3]:172-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Lu Y, Waller EK.[2009] Dichotomous role of interferon-gamma in allogeneic bone marrow transplant. Biol Blood Marrow Transplant.15[11]:1347-53  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Kawase T, Matsuo K, Kashiwase K, Inoko H, Saji H, Ogawa S, Kato S, Sasazuki T, Kodera Y, Morishima Y; Japan Marrow Donor Program.[2009] HLA mismatch combinations associated with decreased risk of relapse: implications for the molecular mechanism. Blood.113[12]:2851-8. Epub 2008 Nov 7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Chakraverty R, Eom HS, Sachs J, Buchli J, Cotter P, Hsu R, Zhao G, Sykes M. [2006] Host MHC class II+ antigen-presenting cells and CD4 cells are required for CD8-mediated graft-versus-leukemia responses following delayed donor leukocyte infusions. Blood 108[6]:2106-13. Epub 2006 Jun 6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Nishida T, Hudecek M, Kostic A, Bleakley M, Warren EH, Maloney D, Storb R, Riddell SR.[2009] Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia. Clin Cancer Res.15[14]:4759-68. Epub 2009 Jun 30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Quintarelli C, Dotti G, De Angelis B, Hoyos V, Mims M, Luciano L, Heslop HE, Rooney CM, Pane F, Savoldo B.[2008] Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma [PRAME] target chronic myeloid leukemia. Blood.112[5]:1876-85. Epub 2008 Jun 30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T.[2007] Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. 98[8]:1139-46. Epub 2007 May 22  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Spierings E, Hendriks M, Absi L, Canossi A, Chhaya S, Crowley J, Dolstra H, Eliaou JF, Ellis T, Enczmann J, Fasano ME, Gervais T, Gorodezky C, Kircher B, Laurin D, Leffell MS, Loiseau P, Malkki M, Markiewicz M, Martinetti M, Maruya E, Mehra N, Oguz F, Oudshoorn M, Pereira N, Rani R, Sergeant R, Thomson J, Tran TH, Turpeinen H, Yang KL, Zunec R, Carrington M, de Knijff P, Goulmy E. [2007]Phenotype frequencies of autosomal minor histocompatibility antigens display significant differences among populations. PLoS Genet.;3[6]:e103.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Imanguli MM, Alevizos I, Brown R, Pavletic SZ, Atkinson JC.[2008] Oral graft-versus-host disease. Oral Dis. ;14[5]:396-412  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] Goulmy E.[2006] Minor histocompatibility antigens: from transplantation problems to therapy of cancer. Hum Immunol. ;67[6]:433-8. Epub 2006 Apr 6. Review  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] Ruggeri L, Capanni M, Mancusi A, Urbani E, Perruccio K, Burchielli E, Tosti A, Topini F, Aversa F, Martelli MF, Velardi A.[2004] Alloreactive natural killer cells in mismatched hematopoietic stem cell transplantation. Blood Cells Mol Dis. 33[3]:216-21  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] Bensa JC[2003]. The major histocompatibility complex as self-referential. Transfus Clin Biol. [3]:209-13.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Kolb HJ, Schmid C, Barrett AJ, Schendel DJ[2004]. Graft-versus-leukemia reactions in allogeneic chimeras. Blood. ;103[3]:767-76  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Zhao XY, Huang XJ.[2007] [Influence factors of reconstitution of killer cell immunoglobulinlike receptor on NK cells following non-T-cell-depleted haploidentical hematopoietic stem cell transplantation] Zhonghua Xue Ye Xue Za Zhi. 8[2]:103-6. Chinese  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] Parham P, McQueen KL.[2003] Alloreactive killer cells: hindrance and help for haematopoietic transplants. Nat Rev Immunol. 3[2]:108-22  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Shaulov A, Yue S, Wang R, Joyce RM, Balk SP, Kim HT, Avigan DE, Uhl L, Sackstein R, Exley MA.[2008] Peripheral blood progenitor cell product contains Th1-biased noninvariant CD1d-reactive natural killer T cells: implications for posttransplant survival. Exp Hematol. 36[4]:464-72. Epub 2008  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Fujii S.[2005] Application of natural killer T-cells to posttransplantation immunotherapy. Int J Hematol. 81[1]:1-5  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Sanchez-Fueyo A, Sandner S, Habicht A, Mariat C, Kenny J, Degauque N, Zheng XX, Strom TB, Turka LA, Sayegh MH.[2006] Specificity of CD4+CD25+ regulatory T cell function in alloimmunity. J Immunol.;176[1]:329-34.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Akasaki Y, Liu G, Chung NH, Ehtesham M, Black KL, Yu JS.[2004] Induction of a CD4+ T regulatory type 1 response by cyclooxygenase-2-overexpressing glioma. J Immunol;173[7]:4352-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Hall BM, Tran G, Hodgkinson SJ[2009]. Alloantigen specific T regulatory cells in transplant tolerance. Int Immunopharmacol.;9[5]:570-4. Epub 2009 Jan 29  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Verma ND, Plain KM, Nomura M, Tran GT, Robinson C, Boyd R, Hodgkinson SJ, Hall BM.[2009] CD4+CD25+ T cells alloactivated ex vivo by IL-2 or IL-4 become potent alloantigen-specific inhibitors of rejection with different phenotypes, suggesting separate pathways of activation by Th1 and Th2 responses. Blood.;113[2]:479-87  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[46] Li AH, Qiu GQ, Gu WY, Ling Y, Weng KZ, Tan Q, Cao XS.[2007] Expression of CD4+ CD25+ regulatory T cells in the patients with acute lymphocytic leukemia] Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 23[5]:439-42  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[47] Cao J, Chen C, Zeng L, Li L, Li Z, Xu K.[2009] Engineered regulatory T cells prevent graftversus- host disease while sparing the graft-versus-leukemia effect after bone marrow transplantation. Leuk Res. [Epub ahead of print  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[48] Guillot-Delost M, Cherai M, Hamel Y, Rosenzwajg M, Baillou C, Simonin G, Leclercq V, Mariotti-Ferrandiz ME, Six A, Bon-Durand V, Maury S, Salomon BL, Cohen JL, Klatzmann D, Lemoine FM.[2008] Clinical-grade preparation of human natural regulatory T-cells encoding the thymidine kinase suicide gene as a safety gene. J Gene Med. 10[8]:834-46  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[49] Maeda A. Extracorporeal photochemotherapy.[2009] J Dermatol Sci.;54[3]:150-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[50] Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T[2007] Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. ;98[8]:1139-46  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[51] Akatsuka Y, Morishima Y, Kuzushima K, Kodera Y, Takahashi T[2007] Minor histocompatibility antigens as targets for immunotherapy using allogeneic immune reactions. Cancer Sci. ;98[8]:1139-46 Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition. Proc Natl Acad Sci U S A. 106[10]:3889-94.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[52] Hambach L, Ling KW, Pool J, Aghai Z, Blokland E, Tanke HJ, Bruijn JA, Halfwerk H, van Boven H, Wieles B, Goulmy E.[2009] Hypomethylating drugs convert HA-1-negative solid tumors into targets for stem cell-based immunotherapy. Blood. ;113[12]:2715-22  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[53] Di Terlizzi S, Zino E, Mazzi B, Magnani C, Tresoldi C, Perna SK, Bregni M, Rossini S, Ciceri F, Bordignon C, Bonini C, Fleischhauer K.[2006] Therapeutic and diagnostic applications of minor histocompatibility antigen HA-1 and HA-2 disparities in allogeneic hematopoietic stem cell transplantation: a survey of different populations Biol Blood Marrow Transplant. 12[1]:95-101  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[54] Meunier MC, Baron C, Perreault C[2009] Two host factors regulate persistence of H7- specific T cells injected in tumor-bearing mice. PLoS One. ;4[1]:e4116  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[55] Overes IM, de Rijke B, van Horssen-Zoetbrood A, Fredrix H, de Graaf AO, Jansen JH, van Krieken JH, Raymakers RA, van der Voort R, de Witte TM, Dolstra H.[2008] Expression of P2X5 in lymphoid malignancies results in LRH-1-specific cytotoxic T-cell-mediated lysis. Br J Haematol. 141[6]:799-807  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[56] Spierings E, Goulmy E.[2005] Expanding the immunotherapeutic potential of minor histocompatibility antigens. J Clin Invest.115[12]:3397-400  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[57] Stumpf AN, van der Meijden ED, van Bergen CA, Willemze R, Falkenburg JH, Griffioen M. [2009]Identification of 4 new HLA-DR-restricted minor histocompatibility antigens as hematopoietic targets in antitumor immunity. Blood.;114[17]:3684-92.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[58] Leo Luznik, MD, and Ephraim J. Fuchs, MD[2002] Donor Lymphocyte Infusions to Treat Hematologic Malignancies in Relapse After Allogeneic Blood or Marrow Transplantation. Cancer Control, Vol. 9, No.2  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[59] Tomblyn M, Lazarus HM.[2008] Donor lymphocyte infusions: the long and winding road: how should it be traveled? Bone Marrow Transplant.;42[9]:569-79  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[60] Frey NV, Porter DL. [2008] Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol. ;21[2]:205-22  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[61] Fowler DH, Gress RE.[2000] Th2 and Tc2 cells in the regulation of GVHD, GVL, and graft rejection: considerations for the allogeneic transplantation therapy of leukemia and lymphoma. Leuk Lymphoma. ;38[3-4]:221-34  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[62] Xia G, Truitt RL, Johnson BD.[2006] Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigen-presenting cells and regulated by regulatory T cells in early and long-term chimeras. Biol Blood Marrow Transplant. ;12[4]:397-407.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[63] Ge X, Brown J, Sykes M, Boussiotis VA.[2008] CD134-allodepletion allows selective elimination of alloreactive human T cells without loss of virus-specific and leukemiaspecific effectors. Biol Blood Marrow Transplant. 14[5]:518-30.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[64] Heslop HE, Stevenson FK, Molldrem JJ.[2003] Immunotherapy of hematologic malignancy. Hematology Am Soc Hematol Educ Program. :331-49  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[65] Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK[2007]. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 13[8]:913-24  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[66] Perruccio K, Topini F, Tosti A, Carotti A, Aloisi T, Aversa F, Martelli MF, Velardi A .[2008]Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells Mol Dis. ;40[1]:76-83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[67] Li YL, Wu YG, Wang YQ, Li Z, Wang RC, Wang L, Zhang YY.[2008] Bone marrow-derived dendritic cells pulsed with tumor lysates induce anti-tumor immunity against gastric cancer ex vivo. World J Gastroenterol.;14[46]:7127-32  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[68] Kaneno R, Shurin GV, Tourkova IL, Shurin MR[2009]. Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations. J Transl Med.;7:58  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[69] Wilde S, Sommermeyer D, Frankenberger B, Schiemann M, Milosevic S, Spranger S, Pohla H, Uckert W, Busch DH, Schendel DJ.[2009] Dendritic cells pulsed with RNA encoding allogeneic MHC and antigen induce T cells with superior antitumor activity and higher TCR functional avidity. Blood.;114[10]:2131-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[70] Gregori S, Magnani CF, Roncarolo MG. Role of human leukocyte antigen-G in the induction of adaptive type 1 regulatory T cells Hum Immunol. 2009 Dec;70[12]:966-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[71] Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC[2008]. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat Immunol. 9[11]:1253-60  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[72] Cao DY, Yang JY, Yue SQ, Tao KS, Song ZS, Wang DS, Yang YL, Dou KF. [2009] Comparative analysis of DC fused with allogeneic hepatocellular carcinoma cell line HepG2 and autologous tumor cells as potential cancer vaccines against hepatocellular carcinoma. Cell Immunol.;259[1]:13-20  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[73] Alpdogan O, Schmaltz C, Muriglan SJ, Kappel BJ, Perales MA, Rotolo JA, Halm JA, Rich BE, van den Brink MR. Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease. Blood. 2001 Oct 1;98[7]:2256-65  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[74] Banovic T, MacDonald KP, Markey KA, Morris ES, Kuns RD, Varelias A, Hill GR.[2009]Donor treatment with a multipegylated G-CSF maximizes graft-versusleukemia effects. Biol Blood Marrow Transplant.15[1]:126-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[75] Teshima T, Hill GR, Pan L, Brinson YS, van den Brink MR, Cooke KR, Ferrara JL. [1999]L- 11 separates graft-versus-leukemia effects from graft-versus-host disease after bone marrow transplantation J Clin Invest. ;104[3]:317-25  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[76] Zheng YX, Hou GH, Song J, Zhang C, Liang T.[2007] Effect of Rapamycin on CD4[+] CD25[+] regulatory T cells in allo-transplantation tolerance model. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. ;23[4]:327-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[77] Buckland M, Jago C, Fazekesova H, George A, Lechler R, Lombardi G.[2006] Aspirin modified dendritic cells are potent inducers of allo-specific regulatory T-cells. Int Immunopharmacol. ;6[13-14]:1895-901.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[78] Buckland M, Lombardi G.[2009] Aspirin and the induction of tolerance by dendritic cells. Handb Exp Pharmacol. ;[188]:197-213.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[79] Mitchell MS.[2002] Cancer vaccines, a critical review--Part I. Curr Opin Investig Drugs.;3[1]:140-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[80] Ho VT, Vanneman M, Kim H, Sasada T, Kang YJ, Pasek M, Cutler C, Koreth J, Alyea E, Sarantopoulos S, Antin JH, Ritz J, Canning C, Kutok J, Mihm MC, Dranoff G, Soiffer R.[2009] Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc Natl Acad Sci U S A.;106[37]:15825-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[81] Jenq RR, King CG, Volk C, Suh D, Smith OM, Rao UK, Yim NL, Holland AM, Lu SX, Zakrzewski JL, Goldberg GL, Diab A, Alpdogan O, Penack O, Na IK, Kappel LW, Wolchok JD, Houghton AN, Perales MA, van den Brink MR. [2009]Keratinocyte growth factor enhances DNA plasmid tumor vaccine responses after murine allogeneic bone marrow transplantation Blood.;113[7]:1574-80  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[82] Nizar Habal, MD, Rishab K. Gupta, PhD, Anton J. Bilchik, MD, PhD, Reynold Yee, BS, Zacharias Leopoldo, DDM, Wei Ye, MS, Robert M. Elashoff, PhD and Donald L. Morton, MD.[2001] CancerVax, An Allogeneic Tumor Cell Vaccine, Induces Specific Humoral and Cellular Immune Responses in Advanced Colon Cancer. Annals of Surgical Oncology 8:389-401  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[83] Pallandre JR, Brillard E, Créhange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C.[2007] Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity. J Immunol.;179[11]:7593-604  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[84] Stangl S, Gross C, Pockley AG, Asea AA, Multhoff G.[2008] Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer [NK] cells. Cell Stress Chaperones. 13[2]:221-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[85] van Luijn MM, Chamuleau ME, Thompson JA, Ostrand-Rosenberg S, Westers TM, Souwer Y, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA.[2009] CLIP down-modulation enhances the immunogenicity of myeloid leukemic blasts resulting in increased CD4+ T cell responses. Haematologica. 2009 Nov 10.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[86] Lin SJ, Yan DC, Lee YC, Kuo ML.[2008] Role of interleukin-15 in umbilical cord blood transplantation. Int Rev Immunol.;27[6]:518-31  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[87] Tanaka J, Sugita J, Kato N, Toubai T, Ibata M, Shono Y, Ota S, Kondo T, Kobayashi T, Kobayashi M, Asaka M, Imamura M.[2007] Expansion of natural killer cell receptor [CD94/NKG2A]-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit. Exp Hematol. ;35[10]:1562-6  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[88] Verneris MR, Brunstein CG, Barker J, MacMillan ML, DeFor T, McKenna DH, Burke MJ, Blazar BR, Miller JS, McGlave PB, Weisdorf DJ, Wagner JE[2009]. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood.;114[19]:4293-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[89] Willemze R, Rodrigues CA, Labopin M, Sanz G, Michel G, Socié G, Rio B, Sirvent A, Renaud M, Madero L, Mohty M, Ferra C, Garnier F, Loiseau P, Garcia J, Lecchi L, Kögler G, Beguin Y, Navarrete C, Devos T, Ionescu I, Boudjedir K, Herr AL, Gluckman E, Rocha V; Eurocord-Netcord and Acute Leukaemia Working Party of the EBMT[2009]. KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord blood transplantation for acute leukemia. Leukemia. 23[3]:492-500  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[90] Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, Perrelli NF, Cosentino C, Torri F, Angius A, Forno B, Casucci M, Bernardi M, Peccatori J, Corti C, Bondanza A, Ferrari M, Rossini S, Roncarolo MG, Bordignon C, Bonini C, Ciceri F, Fleischhauer K.[2009] Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med.;361[5]:478-88  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[91] Elsner HA, Blasczyk R.[2004] Immunogenetics of HLA null alleles: implications for blood stem cell transplantation. Tissue Antigens.;64[6]:687-95  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[92] Sun Y, Kong F, Ren S, Yuan F, Liang F, Liu N, Jin L, Xi Y[2007]. Severe acute graft-vs-host disease in a patient with acute monocytic leukemia having a recombination event between HLA-A/B loci from a multiple recombinant family Tissue Antigens.;70[6]:499- 505.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[93] Worthley DL, Ruszkiewicz A, Davies R, Moore S, Nivison-Smith I, Bik To L, Browett P, Western R, Durrant S, So J, Young GP, Mullighan CG, Bardy PG, Michael MZ.[2009]. Human gastrointestinal neoplasia-associated myofibroblasts can develop from bone marrow-derived cells following allogeneic stem cell transplantation. Stem Cells.;27[6]:1463-8  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[94] Brown JA, Boussiotis VA[2008] Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol. 127[3]:286-97  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[95] Morris ES, MacDonald KP, Hill GR[2006] Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? Blood.;107[9]:3430-5  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[96] Foley JE, Mariotti J, Ryan K, Eckhaus M, Fowler DH.[2008] Th2 cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or hosttype antigen-presenting cells. Biol Blood Marrow Transplant.;14[9]:959-72  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[97] Afzali B, Lombardi G, Lechler RI.[2008] Pathways of major histocompatibility complex allorecognition. Curr Opin Organ Transplant.;13[4]:438-44  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[98] Joseph Pidala and Claudio Anasetti.[2009] Can antigen-specific regulatory T cells protect against graft vs. host disease and spare anti-malignancy alloresponse? Haematologica.. [Epub ahead of print]  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[99] Rowe V, Banovic T, MacDonald KP, Kuns R, Don AL, Morris ES, Burman AC, Bofinger HM, Clouston AD, Hill GR.[2006] Host B cells produce IL-10 following TBI and attenuate acute GVHD after allogeneic bone marrow transplantation. Blood.;108[7]:2485-92  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[100] Shimizu H, Nukui Y, Mitsuhashi N, Kimura F, Yoshidome H, Ohtsuka M, Kato A, Miyazaki M.[2009] Induction of antitumor response by in vivo allogeneic major histocompatibility complex gene transfer using electroporation. J Surg Res;154[1]:60-7  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[101] Perruccio K, Tosti A, Burchielli E, Topini F, Ruggeri L, Carotti A, Capanni M, Urbani E, Mancusi A, Aversa F, Martelli MF, Romani L, Velardi A. [2005]Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood.;106[13]:4397-406.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[102] Spierings E.[2008] Minor histocompatibility antigens: targets for tumour therapy and transplant tolerance. Int J Immunogenet [4-5]:363-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus