RNAI: GENE SILENCING APPROACH IN C. elegans and H. sapiens

Gomase V.S.1*, More R.P.2
1School of Technology, SRTM University, Sub-Center, Latur, India
2Department of Biotechnology, Shivchhatrapati College, Aurangabad, MS, India
* Corresponding Author : gomase.viren@gmail.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 9 - 14
Int J Mol Biol 1.1 (2010):9-14
DOI : http://dx.doi.org/10.9735/0976-0482.1.1.9-14

Conflict of Interest : None declared

Cite - MLA : Gomase V.S. and More R.P. "RNAI: GENE SILENCING APPROACH IN C. elegans and H. sapiens." International Journal of Molecular Biology 1.1 (2010):9-14. http://dx.doi.org/10.9735/0976-0482.1.1.9-14

Cite - APA : Gomase V.S., More R.P. (2010). RNAI: GENE SILENCING APPROACH IN C. elegans and H. sapiens. International Journal of Molecular Biology, 1 (1), 9-14. http://dx.doi.org/10.9735/0976-0482.1.1.9-14

Cite - Chicago : Gomase V.S. and More R.P. "RNAI: GENE SILENCING APPROACH IN C. elegans and H. sapiens." International Journal of Molecular Biology 1, no. 1 (2010):9-14. http://dx.doi.org/10.9735/0976-0482.1.1.9-14

Copyright : © 2010, Gomase V.S. and More R.P., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

siRNAs (Short interfering RNAs) and miRNAs (microRNAs), which are mediate silencing via distinct mechanisms C. elegans and Homo sapiens. The breaking of a doublestranded RNA (dsRNA) matching a specific gene sequence into short pieces called short interfering RNA, which trigger the degradation of mRNA that matches its sequence. In this review, we discussed the RNA interference with its principle and application in recent biological research areas.

References

[1] Alla Grishok and Phillip A. Sharp. Negative regulation of nuclear divisions in Caenorhabditis elegans by retinoblastoma and RNA interference-related genes: PNAS (2005) 102, 48, 17360–17365  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Alla Grishok, Sebastian Hoersch, and Phillip A. Sharp, ‘RNA interference and retinoblastoma-related genes are required for repression of endogenous siRNA targets in Caenorhabditis elegans: PNAS 2008 105, 51, 20386–20391  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Andrew Jakymiw, Keigo Ikeda, Marvin J Fritzler. Autoimmune targeting of key components of RNA interference: Arthritis Research & Therapy (2006) 8, R87  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] C. J. Lord, S. A. Martin, A. Ashworth. RNA interference screening demystified: J Clin Pathol (2009) 62, 195–200  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Carol A. Sledz and Bryan R. G. Williams. RNA interference in biology and disease: Blood (2005) 106, 3, 787–794.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Chen Liu, Yaohui Chen, Xianjun Yu. Proteomic analysis of differential proteins in pancreatic carcinomas: Effects of MBD1 knock-down by stable RNA interference: BMC Cancer (2008), 8,121  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Chi Yu Chan, C Steven Carmack. A structural interpretation of the effect of GC-content on efficiency of RNA interference’, BMC Bioinformatics (2009), 10, 1, S33  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Chih-Ping Mao, Yen-Yu Lin, Chien-Fu Hung. Immunological research using RNA interference technology: Immunology (2007) 121, 295–307  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Daniel P Cioca, Yuji Aoki and Kendo Kiyosawa. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines: Cancer Gene Therapy (2003) 10, 125–133  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Daniela Castanotto and John J. Rossi. The promises and pitfalls of RNA-interference-based therapeutics: Nature (2009) 457, 7228, 426–433  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] David R. Corey. Chemical modification: the key to clinical application of RNA interference?: J. Clin. Invest. (2007) 117, 3615–3622  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] G Jannot & M J Simard. Tumour-related microRNAs functions in Caenorhabditis elegans: Oncogene (2006) 25, 6197–6201  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] George L. Sen and Helen M. Blau. A brief history of RNAi: the silence of the genes: The FASEB Journal (2006) 20, 1293-1299.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Ger JM Pruijn. The RNA interference pathway: a new target for autoimmunity: Arthritis Res Ther. (2006) 8, 4, 110. PMCID: PMC1779402  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Grad, Y., et al, Computational and experimental identification of C. elegans micro-RNAs: Mol. Cell (2003) 11, 1253-1263  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Gregory J. Hannon. Review article RNA interference: Nature (2002) 418, 244-251  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] H Akashi and K Taira. RNAi and epigenetics: Pol IV is a matchmaker of small RNAs meeting with chromatin: Heredity (2007) 98, 125–127  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Hutvagner, G., and P. D. Zamore. A micro-RNA in a multiple-turnover RNAi enzyme complex: Science (2002) 297, 2056-2060.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] Joanne Lomas-Neira, Chun-Shiang Chung and Alfred Ayala. RNA Interference as A Potential Therapeutic Treatment for Inflammation Associated Lung Injury: Int J Clin Exp Med (2008) 1, 154-160  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Julian Downward. RNA interference-based functional genomics in cancer research – an introduction: Oncogene (2004) 23, 8334–8335  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Julie Clayton. RNA interference: The silent treatment: Nature (2004) 431, 599-605  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl. Identification of novel genes coding for small expressed RNAs: Science (2001) 294, 853-858  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Lau, N. C., L. P. Lim, E. G. Weinstein, and D. P. Bartel. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans: Science (2001) 294,858-862  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Lee, R. C., and V. Ambros. An extensive class of small RNAs in Caenorhabditis elegans: Science (2001) 294, 62-864  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Lim, L. P., N. C. Lau, E. C. Weinstein, A. Abdelhakim, S. Yekta, M. W. Rhoades, C. B. Burge, and D. P. Bartel. The micro-RNAs of C. elegans: Genes Dev. (2003) 17, 991- 1008  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Lin He & Gregory J. Hannon. MicroRNAs: small RNAs with a big role in gene regulation: Nature Reviews Genetics (2004) 5, 522–531  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Llave, C., K. D. Kasschau, and J. C. Carrington. Virus encoded suppressor of posttranscriptional gene silencing targets a maintenance step in silencing pathway: Proc. Natl. Acad. Sci. USA (2000) 97, 13401-13406  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Luquan Wang and Forest Y. Mu. A Web-based design center for vector-based siRNA and siRNA cassette: Bioinformatics (2004) 20, 11, 1818-1820  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] M K Addepalli, et al. RNAi-mediated knockdown of AURKB and EGFR shows enhanced therapeutic efficacy in prostate tumor regression: Gene Therapy (2009) doi:10.1038/gt.2009.155  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Marie-Anne Félix. RNA interference in nematodes and the chance that favored Sydney Brenner: Journal of Biology (2008) 7, 34  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Marta Izquierdo. Short interfering RNAs as a tool for cancer gene therapy: Cancer Gene Therapy (2005) 12, 217–227  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Michael P Gantier , et al. Rational Design of Immunostimulatory siRNAs’, Molecular Therapy (2010)  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[33] Neema Agrawal, et al. RNA Interference: Biology, Mechanism, and Applications: MMBR (2003) 67, 4, 657-685  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[34] OLLIVIER MILHAVET, DEVIN, MARK. RNA Interference in Biology and Medicine: Pharmacol Rev (2003) 55, 629–648  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[35] P Trang, J B Weidhaas & F J Slack. MicroRNAs as potential cancer therapeutics: Oncogene (2008) 27, S52–S57  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[36] P. N. Pushparaj, et al. siRNA, miRNA, and shRNA: in vivo Applications: J DENT RES (2008) 87, 11, 992-1003.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[37] Ravi S. Kamath, Andrew G. Fraser. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi: Nature (2003) 421, 231-237.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[38] Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference: Nat Biotechnol. (2004) 22, 3, 326-30  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[39] Rosalind C. et al. Interacting endogenous and exogenous RNAi: RNA (2006) 12, 4, 589– 597  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[40] Rosalind C. Lee, Victor Ambros. An Extensive Class of Small RNAs in Caenorhabditis elegans: Science (2001) 294, 5543, 862 – 864  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[41] Sascha Rutz and Alexander Scheffold. Towards in vivo application of RNA interference – new toys, old problems: Arthritis Res Ther (2004) 6, 78-85  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[42] Sascha Rutz and Alexander Scheffold. Towards in vivo application of RNA interference – new toys, old problems: Arthritis Res Ther (2004) 6, 78-85  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[43] Thoru Pederson. RNA Interference and mRNA Silencing: How Far Will They Reach?: Molecular Biology of the Cell (2004) 15, 2, 407-410  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[44] Tom C Karagiannis, Assam El-Osta. RNA interference and potential therapeutic applications of short interfering RNAs: Cancer Gene Therapy (2005) 12, 787–795  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[45] Wallace F. Marshall. Modeling Recursive RNA Interference: PLoS Computational Biology (2008) 4, 9, e1000183  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[46] Yair Dorsett & Thomas Tuschl. siRNAs: applications in functional genomics and potential as therapeutics: Nature Reviews Drug Discovery (2004) 3, 318–329  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[47] Zhen-wei PAN, Yan-jie LU, Bao-feng YANG. MicroRNAs: a novel class of potential therapeutic targets for cardiovascular diseases: Acta Pharmacologica Sinica (2010) 31,1–9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus