PREDICTION OF METHANOBACTERIUM USING SUFFIXTREE

Satyasaivani B.1*, Kaladhar DSVGK2, Shashi M.3, Kesavareddy J.4
1Department of Computer Science, GITAM University, Visakhapatnam, Andhra Pradesh
2Department of Bioinformatics, GITAM University, Visakhapatnam, Andhra Pradesh
3Department Of Computer and Systems Engineering, Andhra University, Visakhapatnam, Andhra Pradesh
4Department of Computer science, GITAM University, Visakhapatnam, Andhra Pradesh
* Corresponding Author : vedulvani@yahoo.co.in

Received : -     Accepted : -     Published : 21-12-2009
Volume : 1     Issue : 2       Pages : 1 - 4
Int J Mach Intell 1.2 (2009):1-4
DOI : http://dx.doi.org/10.9735/0975-2927.1.2.1-4

Keywords : Ukkonen’s algorithm, Methanobacterium, MEGA, 16S rRNA
Conflict of Interest : None declared
Acknowledgements/Funding : The author would like to express thanks to Departments of computer science and Bioinformatics, GITAM Institute of science, GITAM University, Visakhapatnam for providing research material and necessary facilities.

Cite - MLA : Satyasaivani B., et al "PREDICTION OF METHANOBACTERIUM USING SUFFIXTREE." International Journal of Machine Intelligence 1.2 (2009):1-4. http://dx.doi.org/10.9735/0975-2927.1.2.1-4

Cite - APA : Satyasaivani B., Kaladhar DSVGK, Shashi M. , Kesavareddy J. (2009). PREDICTION OF METHANOBACTERIUM USING SUFFIXTREE. International Journal of Machine Intelligence, 1 (2), 1-4. http://dx.doi.org/10.9735/0975-2927.1.2.1-4

Cite - Chicago : Satyasaivani B., Kaladhar DSVGK, Shashi M. , and Kesavareddy J. "PREDICTION OF METHANOBACTERIUM USING SUFFIXTREE." International Journal of Machine Intelligence 1, no. 2 (2009):1-4. http://dx.doi.org/10.9735/0975-2927.1.2.1-4

Copyright : © 2009, Satyasaivani B., et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Prediction of Methanobacterium using suffix tree is a server designed to know the query sequence related to Methanococus thermophilus and also to execute the maximum length of the string related to Methanococcus. MEGA 4.0 is used to know the conserved sites aligned from 70 sequences related to 16S rRNA nucleotide sequence (Methanococcus thermophilus) from NCBI database. There are 12 strings aligned in all sequences that are highly conserved in the aligned sequences. Ukkonen’s algorithm is used to find the suffix tree for the given patterns (conserved sites). If the query sequence is submitted to the PMST (Prediction of Methanobacterium using Suffix Tree), the results will give the maximum sequence length and the suffix tree based on Ukkonen’s algorithm.

References

[1] Carrillo H. and Lipman, D. (1988) The multiple sequence alignment problem in biology, SIAM J. Appl. Math., 48(5), 1073-1082  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Ukkonen E. (2005) On-line construction of suffix trees, Algorithmica, 14(3), 249-260  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Yu-Lung Lo, Wen-Ling Lee and Lin-huang Chang (2008) True suffix tree approach for discovering non-trivial repeating patterns in a music object, Springer Science, 37(2), 169-187  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Sandeep Tata, Richard A Hankins and Jignesh M.Patel (2004) Practical suffix tree construction, VLDB Endowment, 30, 36-47  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Baeza-Yates R. and Navarro G. (1999) Faster Approximate String Matching, Springer, New York, 23(2), 127-158  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Hal Berghel and David Roach (1996) An extension of Ukkonen's enhanced dynamic programming ASM algorithm, ACM, New York, 14(1), 94 – 106  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Navarro G. and Baeza-Yates R. (2001) Improving an Algorithm for Approximate Pattern Matching, Algorithmica, 30(4), 473-502  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Ricardo A. Baeza-Yates and Chris H. Perleberg (1999) Fast and practical approximate string matching, Inf. Process. Lett., 59(1), 21-27  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Kaizhong Zhang (1995) Algorithms for the constrained editing distance between ordered labeled trees and related problems, ScienceDirect, 28(3), 463-474  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Veli Mäkinen, Gonzalo Navarro and Esko Ukkonen (2005) Transposition invariant string matching, J. Algorithms, 56(2), 124-153  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain : the primary kingdoms, Proc Natl Acad Sci USA, 74, 5088- 5090.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Woese CR. Kandler O and Wheelis ML (1990) Towards a nature system of organisms: proposal for the domains, Archaea, Bacteria, and Eucarya. Proc. Natl Acad Sci USA, 87, 4576- 4579.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Boonsri Jongsareejit (2004) Hyperthermophilic Archaea, Silpakorn University International Journal, 4(1-2), 166-180.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus