

Research Article ANTIMICROBIAL PROPERTIES OF SEED SPICES AND THEIR EFFECT ON PATHOGENIC MICROORGANISMS

B. KRISHNAVENI¹ AND P. IRENE VETHAMONI²

¹Department of Spices and Plantation Crops, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India ²Professor (Horticulture), Department of Spices and Plantation Crops, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India *Corresponding Author: Email - irenevetha17@gmail.com

Received: April 02, 2021; Revised: April 26, 2021; Accepted: April 27, 2021; Published: April 30, 2021

Abstract: Currently, several thousands of diseases are attacking human population, and to tackle them it has become substantial for us to explore the antibiotics. Synthetic antibiotics available in market have its own side effects. Recently, the use of natural products has become ideal for treatment of microbial infections. Hence, scientists are in pursuit of antibiotics which are naturally present in plants. As a result, most of the world's population uses spice materials as traditional medicine because of their strong antimicrobial properties. The application of spices in treating ailments would be an ideal alternative and can also open up opportunities for the development of anticancer, antimicrobial, and antiviral drugs with lower side effects. Several research works have been carried out in spices that suggest their usage as a potential antimicrobial agent. Pharmacological properties of seed spices *viz.*, Cumin, Coriander, Fennel, Fenugreek, Ajwain, Dill, Black cumin, Celery, Aniseed and Caraway with good potential for antimicrobial, and radical scavenger abilities is observed. Taking into consideration the significant role of antimicrobial drugs on human, plant and animal life that are free from side effects will help to cure widespread diseases of day-to-day life of population.

Keywords: Anti- microbial, Spices, Synthetic drugs, Essential oils, Bioactive compounds

Citation: B. Krishnaveni and P. Irene Vethamoni (2021) Antimicrobial Properties of Seed Spices and Their Effect on Pathogenic Microorganisms. International Journal of Agriculture Sciences, ISSN: 0975-3710 & E-ISSN: 0975-9107, Volume 13, Issue 4, pp.- 10720-10723.

Copyright: Copyright©2021 B. Krishnaveni and P. Irene Vethamoni, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

The term seed spice refers to dried seeds or fruits of annual herb that are used as spices. It is an important group of agricultural commodities and play a significant role in the nation's economy. The states, Rajasthan and Gujarat together contribute more than 80 per cent of the total seed spice production of the country [1]. Seed spices produce numerous secondary metabolites or phytochemicals, these are naturally occurring and comprise biologically active chemical compounds, which act as a natural defense system for host plants. Secondary metabolites have been historically used in pharmaceuticals, fragrances, flavor compounds, dyes, and agrochemical [2]. Antimicrobials are also classified as synthetic and herbal antimicrobial agents according to their different chemical substances. Antimicrobial agent or antimicrobial drug defined as an agent which is used to kill microorganisms they act against, such as bacteria and viruses. For instance, if it acts against bacteria, they are called antibiotics

Synthetic antimicrobial agents are used to control microbial infections. But synthetic antimicrobial agents create numerous side effects and in order to counteract these issues the search for "naturally derived" sources is the need of the hour [3]. Plants are known to produce different secondary metabolites that show antagonistic reactions against pathogens [4]. Hence plant-derived spices and their essential oils that contain different bioactive compounds can be utilized for the production of naturally derived antimicrobial drugs. These components are generally recognized as safe (GRAS) with no side effects. The bioactive constituents of spices can be divided into volatile and non-volatile compounds and the volatile compounds present in spices are mainly responsible for the antimicrobial activity. In this regard seed spices could be exploited as a good alternative.

Antimicrobial properties of seed spices and their defense mechanism

Phytochemicals present in seed spices are Alkaloids, Flavonoids, Phenolic compounds, Terpene, Essential oil and Saponin

Alkaloids

It is the largest group of secondary chemical constituents among the phytochemicals present in the plants [10]. It acts against microorganisms as it possess the ability to intercalate with DNA, thereby disrupting transcription, replication & also inhibits cell division, resulting in cell death. Alkaloids present in seed spice fenugreek are trigonelline (0.2-0.36%), choline (0.5%), gentianine and carpaine.

Tannins

This group of phytochemicals is widely distributed in plant flora. Mostly found in root, bark, stem and outer layers of plant tissues. Its mode of action against the microorganism is by inactivation of cell envelope transport proteins such as adhesins, enzyme inhibition, or disruption of cell membranes [11]. The tannin compound is present in the seed spice coriander and fennel.

Essential oil

Essential oils are odorous volatile liquids found in flowers, roots, barks, leaves, seeds, fruits, and wood. Active compounds present in essential oil containing hydroxyl group (-OH) are highly responsible for their antimicrobial activity. The hydroxyl groups can be easily bind to the active site of enzymes and alter their metabolism. Coriander and ajwain the essential oil contain linalool and thymol respectively [12].

Antimicrobial Properties of Seed Spices and Their Effect on Pathogenic Microorganisms

Table-1 Bioactive compounds of seed spices and their uses [Peter, (2002)]

Name	Scientific name and family	Parts used	Major compound	Uses
Coriander	Coriandrum sativum	Leaves &	Linalool	Carminative, diuretic, digestive, stimulant, anti-
	Apiaceae	Seeds		inflammatory, antioxidant
Fenugreek	Trigonella foenum-graecum	Leaves & seeds	Diosgenin, trigonelline and	Carminative, tonic, aphrodisiac, antibacterial, diabetes
	Fabaceae		4-hydroxyisoleucine	and oral contraceptive
Cumin	Cuminum cyminum	Seeds	Cuminaldehyde,	Gastrointestinal, antimicrobial, antioxidant
	Apiaceae		β-pinene and γ-terpinene	
Fennel	Foeniculum vulgare Apiaceae	Seeds	Anethole	Antioxidant, anticancer, stimulant, carminative,
			fenchone & phenols	stomachic, aphrodisiac, and antimicrobial
Ajwain	Trachyspermmammi	Seeds	Thymol, γ-terpinene, p-cymene,	Digestive, mild stimulant, stomachic, carminative,
	Apiaceae		palmitic acid and xylene	aphrodisiac, antiseptic, antifungal, antibacterial
Black cumin	Nigella sativa	Seeds	Nigellone&	Diuretic, antihypertensive, antidiabetic, anticancer,
	Ranunculaceae		thymoquinone,	analgesic, antimicrobial, anthelmintics & antioxidant
			thymohydroquinone	properties antiviral
Celery	Apium graveolens	Leaves and	d-limonene	Antioxidants, digestion
	Apiaceae	Seeds	(60%), ß-selinene (10-12 %)	
Caraway	Carum carvi	Seeds	Carvone (60%)	Antispasmodic, antiseptic, antiparasitic, lactogenic,
	Apiaceae		and limonene	aromatic, carminative, digestive, and stimulant

Table-2 Antiviral properties of black cumin

Crop	Bio active compound	Virus	References
		Avian influenza (H9N2)	[5]
		Antiviral	[6]
	Nigellone	Hepatitis C virus	[7]
Black cumin	Thymoquinone	HIV protease enzyme	[8]
	Thymohydroquinone	SARS-CoV-2	[9]

Table-3 Antimicrobial effect of Seed Spices on Human Pathogenic Organisms

Spices	Extraction	Bioactive Component	Microorganism	References
Black cumin	Essential oil	36-38% fixed oils, proteins, alkaloids, saponin and 0.4 -2.5% essential oil	Aeromonas hydrophila (Endocarditis)	[18]
Fenugreek	Aqueous Extract	Seed saponin	S.aureus (abscesses), and E. coli (diarrhea)	[19]
Caraway	Essential oil	Carvone (60%) and limonene	S.aureus (abscesses), and E. coli (diarrhea)	[20]
Coriander	Aqueous decoctions and infusion	Flavonoids -quercitin, kaempferol, rhamnetin, and Phenolic acid	Gram-positive and Gram-negative bacteria, including Listeria monocytogenes	[21]
Celery	Essential oil	Limonene	Bacillus subtilis (septicemia)	[22]
Aniseed	Essential oil	Anethole	Saccharomyces cerevisiae (pneumonia) Candida albicans (Digestive issues)	[23]
Fennel	Essential oil	Trans-anethol, fenchone, estragole	E. coli (diarrhea) and B.subtilis, (septicemia)	[24]
Ajwain	Essential oil	Carvacol and thymol	Klebsiella pneumoniae,E. coli, Staphylococcus aureus (abscesses)	[25]
Cumin	Essential oil and alcoholic extract	Cuminaldehyde	Aspergillus niger(acute hepatitis) & E. coli (diarrhea)	[26]
Dill	Essential oil	Limonene, carvone, anetho furan	Aspergillus flavus (acute hepatitis)	[27]

Table-4 Antimicrobial effect of Seed Spices on Plant Pathogenic Organisms

Spices	Bio active compound	Disease	Сгор	Causal organism	References
Cumin	Cuminaldehyde	Bacterial leaf spot	Tomato	X. campestris pv. vesicatoria ,	[28]
				X. campestris pv. campestris	
Fennel	Anethole	Wilt of tomato	Tomato	Fusarium oxysporum f. sp. Lycopersici	[29]
Aniseed	Trans - anethole	Rot	Apple	Botrytis cinerea	[30]
Caraway	Carvone (60%) and limonene	Root rot	Peas	Sclerotium rolfsii	[31]
Ajwain	Thymol	Curvularia leaf spot and wilt	Cassava and guava	Curvularialunata, Fusarium chlamydosporum	[32]
Coriander	Linalool	Rice seedling blight, Leaf spot	Rice and Chilli	Pyriculariaoryzae& Alternaria sp	[33]
Dill	Carvone	Sclerotinia Rot	Rapeseed	Sclerotinia sclerotiorum	[34]

Table-5 Antimicrobial effect of Seed Spices on Animal Pathogenic Organisms

Spices	Bio active compound	Animal	Microorganism	References
Coriander	Linalool	Cat & Dog	Microsporum canis (upper, dead layers of skin)	[35]
Dill	Carvone	Dog	Candida albicans (abnormal amount of drooling)	[36]
Fennel & Ajwain	Anethole, thymol	Cat & Dog	Microsporum gypseum, (ring worm) Microsporum canis (circular lesions)	[37]
Caraway	Carvone (60%) and limonene	Poultry and pig	Clostridium perfringens (enterotoxemia)	[38]
Black Cumin	thymoguinone	Bovine	Coagulase - negative Staphylococci (mastitis)	[39]

Flavonoids

It is an important group of polyphenols, synthesized in the cytoplasm of the plant cell and then accumulate in vacuoles that fuse with the central vacuole of epidermis and cortex cells [13]. Till date more than 4000 distinct flavonoids are identified, among them nearly 70% of the flavonoids are present in plants. Flavonoids interact with membrane proteins that are present in bacterial cell walls increasing the permeability of the membrane and disrupting it and then cause cell

death [14]. The flavanoid compound present in the seed spice fennel is quercetin.

Phenolics

The color of fruits and flowers is due to the presence of polyphenols. These are a series of pigment compounds with the quinonic structure. Phenolic compounds sensitize the phospholipid bilayer of the microbial cytoplasmic membrane causing increased permeability and unavailability of vital intracellular constituents[15].

B. Krishnaveni and P. Irene Vethamoni

T 11 A F <i>i i</i>		
Table-6 Extraction	methods of active	e principles of seed spices

Crop	Form	Extraction method	Bio active compound	Compound analysis	References
Coriander	Essential oil	Steam distillation	Linallol		[40]
Fenugreek	Crude extract	Microwave Assisted Extraction	Diosgenin		[41]
Fennel	Essential oil	Hydro distillation	Trans anethole		[42]
Cumin	Essential oil	MW-assisted hydro distillation	Cuminaledyde		[43]
Black cumin	Essential oil	Subcritical CO ₂ extraction	Thymo Quinine	Gc-Ms analysis	[44]
Dill	Essential oil	Supercritical carbon dioxide	D-carvone, D-limonene	GC-IVIS allalysis	[45]
Ajwain	Essential oil	Hydro distillation	Thymol		[46]
Celery	Essential oil	Ultrasound-Assisted Hydro distillation	Limonene	_	[47]
Caraway	Essential oil	supercritical fluid extraction	Carvone		[48]
Aniseed	Essential oil	Hydro distillation	trans-Anethole		[49]

Saponins

Saponins are compounds derived from steroids or triterpenoid glycosides, which occur in many plants and act on microbial cells by permeabilization of the membrane [16]. Diosgenin is a saponin present in the seed spice of fenugreek (2 to 7%). Among the numerous advantages of natural antimicrobial agents, it is often stated that bacteria do not develop resistance to herbal medicines, or at least the low level of resistance since they possess high antimicrobial potential at lower prices [17]. Such naturally obtained antimicrobial agents are less toxic and free of side effects compared to synthetic antimicrobial agents.

Conclusion

Seed spices are used in our day-to-day life. Other than culinary purpose, it has pharmaceutical significance as it possesses anti-oxidant & anti-microbial properties. Major seed spices like coriander, fenugreek, fennel, cumin have antimicrobial properties against human, plant, and veterinary pathogens. Not only major spices the minor seed spices like ajwain, celery, aniseed, caraway and dill also contain antimicrobial properties. Black cumin is one of the minor seed spices that contains anti-viral property which can be used in the preparation of medicines for the treatment of viral diseases like COVID-19. Due to all the beneficial properties present, the seed spices can be used in suitable pharmaceutical dosage to treat infections of human, plant & veterinary diseases.

Application of research: Plant-derived spices and their essential oils that contain different bioactive compounds can be utilized for the production of naturally derived antimicrobial drugs for controlling pathogenic organisms in the field of agriculture, veterinary and medicine.

Research Category: Seed Spices

Acknowledgement / Funding: Authors are thankful to Department of Spices and Plantation Crops, Tamil Nadu Agricultural University, Coimbatore, 641003, India

**Research Guide or Chairperson of research: Dr P. Irene Vethamoni

University: Tamil Nadu Agricultural University, Coimbatore, 641003, India Research project name or number: Review study

Author Contributions: All authors equally contributed

Author statement: All authors read, reviewed, agreed and approved the final manuscript. Note-All authors agreed that- Written informed consent was obtained from all participants prior to publish / enrolment

Study area / Sample Collection: Tamil Nadu Agricultural University, Coimbatore, 641003

Cultivar / Variety / Breed name: Spices

Conflict of Interest: None declared

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors. Ethical Committee Approval Number: Nil

References

- [1] Gopal L. (2018) J Agric Sci., 8, 49-62.
- [2] Lal G. and Meena S. (2018) Biomedica Journal of Science & Technical Research, 5 (4).
- [3] Bereksi M.S., Hassaïne H., Bekhechi C. and Abdelouahid D.E. (2018) *Pharmacognosy Journal*, 10 (3).
- [4] Tribess B., Pintarelli G.M., Bini L.A., Camargo A., Funez L.A., de Gasper A.L. and Zeni A.L.B. (2015) *Journal of Ethnopharmacology*, 164,136-146.
- [5] Arici M., Sagdic O. and Gecgel U. (2005) Grasas y Aceites, 56 (4),259-262.
- [6] Salem M.L. and Hossain M.S. (2000) International Journal of Immunopharmacology, 22 (9),729-740.
- [7] Forouzanfar F., Bazzaz B.S.F. and Hosseinzadeh H. (2014) *Iranian Journal of Basic Medical Sciences*, 17 (12),929.
- [8] Onifade A.A., Jewell A.P. and Adedeji W.A. (2013) African Journal of Traditional, Complementary and Alternative Medicines, 10 (5), 332-335.
- [9] Sommer A.P., Försterling H.D. and Naber K.G. (2020) Precis Nanomed, 3 (3), 541-548.
- [10] Rawat M. and Wulff W.D. (2004) Organic letters, 6 (3), 329-332.
- [11] Scalbert A. (1991) Phytochemistry, 30 (12), 3875-3883.
- [12] Hyldgaard M., Mygind T. and Meyer R.L. (2012) Frontiers in Microbiology, 3,12.
- [13] Carson C.F. and Hammer K.A. (2011) Lipids Essent Oils Antimicrob Agents, 25, 203-238.
- [14] Ahmad A., Kaleem M., Ahmed Z. and Shafiq H. (2015) Food Research International, 77, 221-235.
- [15] Lima M., de Sousa C.P., Fernandez-Prada C., Harel J., Dubreuil J. and De Souza E. (2019) *Microbial pathogenesis*, 130, 259-270.
- [16] Omojate Godstime C., Enwa Felix O., Jewo Augustina O. and Eze Christopher O. (2014) J Pharm Chem Biol Sci., 2 (2), 77-85.
- [17] WHO (2014) Antimicrobial resistance, global report on surveillance: World Health Organization.
- [18] Deloer S., Bari M. and Hoque M.M. (2017) Bangladesh Journal of Microbiology, 34 (2), 55-60.
- [19] Alwan A.M., Jassim I.M. and Jasim G.M. (2017) Diyala Journal of Medicine, 13 (1), 63-67.
- [20] Kwiatkowski P., Giedrys-Kalemba S., Mizielinska M. and Bartkowiak A. (2015) Herba Polonica, 61 (4).
- [21] Aelenei P., Rimbu C., Gugui.nu E., Dimitriu G., Aprotosoaie A., Brebu M., Horhogea C. and Miron A. (2019) *Letters in Applied Microbiology*, 68 (2), 156-164.
- [22] Oraby A., Abd Aleem I., Abou Aly H., Abdel Azeiz A., El Sayed A. and El-Hadary A. (2020) *Journal of Agricultural Chemistry and Biotechnology*, 11 (7), 219-222.
- [23] Kubo I, Fujita Ki and Nihei Ki (2008) Journal of the Science of Food and Agriculture, 88 (2), 242-247.
- [24] Anwar F., Ali M., Al Hussain and Shahid M. (2009) Flavour and Fragrance Journal, 24 (4), 170-176.
- [25] Sharifi Mood B., Shafeghat M., Metanat M., Saeidi S. and Sepehri N. (2014) International Journal of Infection, 1 (2).

- [26] Bose D. (2018) International Journal of Advancement in Life Sciences Research, 8-12.
- [27] Tian J., Ban X., Zeng H., He J., Chen Y. and Wang Y. (2012) PloS one, 7 (1), e30147.
- [28] Iacobellis N.S., Lo Cantore P., Capasso F. and Senatore F. (2005) Journal of Agricultural and Food Chemistry, 53 (1), 57-61.
- [29] Kalleli F., Ghassen A., Salem I.B., Boughalleb M'Hamdi N. and M'Hamdi M. (2020) Phytopathologia Mediterranea, 59 (1), 63-76.
- [30] Behdani M., Pooyan M. and Abbasi S. (2012) International Journal of Agriculture and Crop Sciences, 4 (14), 1012-1016.
- [31] El-Mougy N.S. and Alhabeb R.S. (2009) Journal of Plant Protection Research, 49(4), 353-361.
- [32] Bairwa R., Sodha R. and Rajawat B. (2012) Pharmacognosy reviews, 6 (11), 56.
- [33] Zare-Shehneh M., Askarfarashah M., Ebrahimi L., Kor N.M., Zare-Zardini H., Soltaninejad H., Hashemian Z. and Jabinian F. (2014) Int J Biosci., 4 (6), 89-99.
- [34] Ma B., Ban X., Huang B., He J., Tian J., Zeng H., Chen Y. and Wang Y. (2015) *PloS one*, 10 (7), e0131733.
- [35] Soares B.V., Morais S.M., dos Santos Fontenelle R.O., Queiroz V.A., Vila-Nova N.S., Pereira C., Brito E.S., Neto M.A., Brito E.H. and Cavalcante C.S. (2012) *Molecules*, 17 (7), 8439-8448.
- [36] Chen Y., Zeng H., Tian J., Ban X., Ma B. and Wang Y. (2014) Fungal biology, 118 (4), 394-401.
- [37] Nuzhat T. and Vidyasagar G. (2013) Int. J. Pharm. Pharm. Sci., 5, 19-28.

- [38] Zhai H., Liu H., Wang S., Wu J. and Kluenter A.M. (2018) Animal Nutrition, 4 (2), 179-186.
- [39] Abdalhamed A.M., Zeedan G.S.G. and Abou Zeina H.A.A. (2018) Veterinary world, 11 (3), 355.
- [40] Özkinali S., Şener N., Gür M., Güney K. and Olgun Ç. (2017) Indian J, Pharm. Educ., 51 (3), 221-224.
- [41] Dsouza M., Rufina K. and Hana D. (2018) Research Journal of Biotechnology, 13 (12), 10-17.
- [42] Sadeghmousavi S. (2019) Food Science and Technology, 16 (91), 119-128.
- [43] Ascrizzi R., González-Rivera J., Pomelli C.S., Chiappe C., Margari P., Costagli F., Longo I., Tine M.R., Flamini G. and Duce C. (2017) *Reaction Chemistry & Engineering*, 2 (4), 577-589.
- [44] Edris A.E., Wawrzyniak P. and Kalemba D. (2018) Journal of Essential Oil Research, 30 (2), 84-91.
- [45] Li H., Zhou W., Hu Y., Mo H., Wang J. and Hu L. (2019) Tropical Journal of Pharmaceutical Research, 18 (6), 1291-1296.
- [46] Dhaiwal K., Chahal K.K., Kataria D. and Kumar A. (2017) Journal of Food Biochemistry, 41 (3), e12364.
- [47] Zorga J, Kunicka-Styczyńska A., Gruska R. and Śmigielski K. (2020) Molecules, 25 (22), 5322.
- [48] András C.D., Salamon R.V., Barabas I., Volf I. and Szep A. (2015) Environmental Engineering & Management Journal (EEMJ), 14 (2).
- [49] Abu-Rumman A.M. (2018) International Journal of Chemical Sciences, 6, 3033-3037.