
Bioinfo Publications 319

NOVEL SORTING TECHNIQUE FOR LARGE DATABASES

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012, pp-319-321
Available online at http://www.bioinfo.in/contents.php?id=55

ANUJ KUMAR1, RAMA SUSHIL1* AND SUSHIL KUMAR2

1Department of MCA SGRRITS, Dehradun, Uttarakhand, India
2Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India
*Corresponding Author: Email- ramasushil@yahoo.co.in

Received: December 12, 2011; Accepted: January 15, 2012

Abstract- Sorting is frequently used in a large variety of important applications used by schools, hospitals, banks and in many other organiza-
tions. This paper presents a novel sorting technique named “Position Sort”. This sorting technique provides the correct position to an element
by only one swapping operation. It is an improved sorting algorithm with lesser running time and number of swapping operations in compari-
son to some other existing techniques like Bubble sort and Selection sort.
Keywords- Sorting, Bubble sort, Selection sort, Swapping, Correct position

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Introduction
An algorithm is a finite sequence and well-defined set of computa-
tional instructions that takes some value or set of values as input
and produces some value as a result [1]. A good algorithm is that
which gives satisfactory result for every range of data set. Sorting
is a very basic concept and important for solving other problems
like is prerequisite for Binary Search. Sorting is the fundamental
problem of computer science and remained burning issue for re-
search over the last several years due to time complexity [2]. Sort-
ing is often used in a large variety of critical applications and is a
fundamental task that is used by most computers. Sorting algo-
rithm falls into two basic categories: comparison based and non-
comparison based. The comparison based sorting algorithm works
on the basis of comparing the elements. Comparison based im-
portant algorithms are: quick sort, merge sort, heap sort, bubble
sort, and insertion sort [3]. A non-comparison based algorithm
sorts an array without consideration of pair wise data elements.
Radix sort is a non-comparison based algorithm [4].
Some existing algorithms are very fast but complex to implement,

while some are not fast but easy to implement. Moreover some are
better option for small size data while some for larger size data.
Some sorting algorithms work on small data-size, some are suita-
ble for floating point numbers, some are good for specific range,
some are better for large dataset, and some are useful for data set
having non-distinct values also.
 There are two groups of sorting algorithms one having complexity
O(n2) which include bubble, insertion, selection and other with
complexity O(nlogn) which includes heap, merge and quick sort
techniques.
In general we have two operations in comparison based sorting
techniques, one is “comparison” and second is “swapping”. But
Comparison operation is considered as the key operation and com-
plexity of a sorting technique is defined on the basis of total num-
ber of comparison operations while ignoring the “swapping” opera-
tions. Practically it is observed that swapping operation effects the
running time and increases the CPU work load.
In this paper we are introducing a simple and efficient novel sorting
technique named “Position Sort”. This technique finds the correct

Citation: Anuj kumar, Rama Sushil and Sushil Kumar. (2012) Novel Sorting Technique for Large Databases. Journal of Information and
Operations Management ISSN: 0976–7754 & E-ISSN: 0976–7762, Volume 3, Issue 1, pp-319-321.

Copyright: Copyright©2012 Rama Sushil, et al. This is an open-access article distributed under the terms of the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cred-
ited.

Bioinfo Publications 320

position of a particular element and places that element at that
position. After placing the element at correct position that element
does not remain involved in swapping operations further. It places
the elements at their correct position after one swapping operation
only. Practically it takes lesser running time than selection and
bubble sort therefore is an efficient sorting technique for large data
set.

 Position Sort
This sorting technique is applicable on distinct and non-distinct
data set. Suppose we have an array of size 10 and we select the ith
indexed element. Than we count all the smaller elements than the
pivot element. Suppose total no. of smaller element is “count” then
we swap the pivot (ith indexed) element with the [count+i]th indexed
element. That position will be the correct position of that pivot ele-
ment. After this swapping, that pivot element will not be involved in
another swapping operation.
In the second case we allow the repetition of elements in the list.
The procedure remains same but if the element which is ready to
swap with pivot element is equal to the pivot element then we will
not swap but move on to the next element and check if that ele-
ment is not equal to pivot element then perform swapping and so
on.
Analysis of the position sort algorithm provides the following re-
sults: In the average case, the position sort performs the sorting by
maximum (n-1) swapping operations only, where n is data size. In
the worst case it performs maximum n/2 swapping operations only.
Position Sort Steps by an Example
Let us take an array named list[10] as following:

First we select 0th index element (as pivot element). Total numbers
of smaller elements are counted than the pivot element (we have a
variable named count. Initially assigned by 0 and increment that
when we find smaller element). After all comparisons we have the
‘5’ smaller elements then we swap the pivot element with 5th ele-
ment from itself. It means 12 will be swapped with 2 and list[10]
becomes as following:

We have completed the first iteration and placed the pivot element
(12) at its correct and final position. Correct position is the position
where it would be in the sorted list and 12 is placed at its appropri-
ate position by just one swapping. Element 12 is shaded with grey
color. It’s an indication of correct position of the particular element.
Now again we selected the 0th index element as pivot element
which is ‘2’ and repeat the above procedure, no element is smaller
than ‘2’. It means the pivot element is already its appropriate posi-
tion. Now we will move at next element. So now two elements are
at final correct position shown in below list:

Similar steps will be running till all elements get their appropriate
position. Let’s see a complete solution in a single glance.

Array: list

Pseudocode of the Position Sort

Implementation & Comparative Study
Running time of position sort is observed with bubble sort, selection
sort and insertion sort using same data set using “C free” compiler.
Comparative running time has taken at various sizes of data in
worst-case and shown in figure 1

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

Novel Sorting Technique for Large Databases

0 1 2 3 4 5 6 7 8 9

12 9 7 13 23 2 17 4 8 21

0 1 2 3 4 5 6 7 8 9

2 9 7 13 23 12 17 4 8 21

0 1 2 3 4 5 6 7 8 9

2 23 7 13 9 12 17 4 8 21

12 9 7 13 23 2 17 4 8 21

2 9 7 13 23 12 17 4 8 21

2 9 7 13 23 12 17 4 8 21

2 23 7 13 9 12 17 4 8 21

2 21 7 13 9 12 17 4 8 23

2 8 7 13 9 12 17 4 21 23

2 13 7 8 9 12 17 4 21 23

2 17 7 8 9 12 13 4 21 23

2 4 7 8 9 12 13 17 21 23

2 4 7 8 9 12 13 17 21 23

2 4 7 8 9 12 13 17 21 23

Bioinfo Publications 321

Fig. 1- Running time vs. Data size

Number of swapping operations are also observed for the above
four techniques. In worst case the Position Sort has the lesser
swapping operations in comparison to other sorting algorithms to
perform the sorting operation shown in figure 2.

Fig. 2- Number of swapping operations vs. Data size

Conclusion and Future Work
Concept of Position sort is simple. It uses maximum (n-1) swapping
operations to sort the given data of size ‘n’. It places the element at
its correct position, i.e. position where that element will be in sorted
list, after one swapping operation only. Use of the second array
named “record” for keeping the record of correct positioning ele-
ments helps to increase the efficiency of the technique by decreas-
ing the comparison operations.
In future we intend to compare it with other existing techniques and
computing the time complexity of it.

References
[1] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein C. (2003)

Introduction to Algorithms MIT Press, Cambridge, MA, 2nd edi-
tion.

[2] Alfred V., Aho J., Horroroft, Jeffrey D.U. (2002) Data Structures
and Algorithms.

[3] Frank M.C. (2004) Data Abstraction and Problem Solving with
C++. US: Pearson Education, Inc.

[4] Seymour Lipschutz (2009) Data Structure with C, schaum Se-
ries, Tata McGraw-Hill Education.

Anuj kumar, Rama Sushil and Sushil Kumar

Journal of Information and Operations Management
ISSN: 0976–7754 & E-ISSN: 0976–7762 , Volume 3, Issue 1, 2012

